-
- Gu Cheng, Xiao Ma, Junmei Li, Yuet Cheng, Yan Cao, Ziming Wang, Xiaowen Shi, Yumin Du, Hongbing Deng, and Zubing Li.
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology & Department of Oral and Maxillofical Trauma and Plastic Surgery, Wuhan University Stomatological Hospital, Wuhan University, Wuhan 430079, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.
- Int J Pharm. 2018 Aug 25; 547 (1-2): 656-666.
AbstractPlatelet-rich plasma (PRP) is used in therapy for bone tissue repair because an abundance of osteogenesis-related growth factors can be released from the concentrated platelets. However, its clinical use is limited because growth factors, temporally released from PRP, are degraded rapidly. This study aimed to incorporate PRP-derived growth factors into SF/PCL/PVA nanofibers by coaxial electrospinning to determine the release profiles of growth factors and how the presence of these growth factors enhances the osteogenic abilities of the nanofibers. Scaffolds containing different ratios of PRP and PVA were prepared and characterized. We then quantified the release of growth factors from the nanofibers over time, and evaluated the proliferation, migration and osteogenic differentiation of MSCs. The in vivo osteogenic capacity of the PRP-containing core-shell NFS was also evaluated by transplanting the PRP/MSCs/CS/β-TCP compounds into the skin on the back of nude mice and by treating cranial defects of C57BL/6 mice. The results of such treatments were analyzed by immunofluorescent staining, μ computed tomography (μCT), and histological observation. The results show that coaxial nanofibers with a PRP-5% PVA solution ratio of 7:1 contained a relatively high amount of PRP and exhibited a more uniform distribution of fiber diameters. The bioactivity of the scaffolds was enhanced due to the increased proliferation and migration of bone marrow mesenchymal stem cells (BMSCs). When the cells were inoculated and cultured on the PRP-loaded nanofibrous mats, the expression of collagen type II also increased. Furthermore, new bone formation was also promoted by PRP-NFS after 8 weeks of implantation. In conclusion, this study shows that the incorporation of PRP had positive effects on the bioactivity and osteogenic ability of coaxial nanofibrous mats. Such nanofibrous mats may prove beneficial in various applications of bone tissue engineering.Copyright © 2018 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.