-
Multicenter Study
Exploration of High- and Low-Frequency Options for Subperception Spinal Cord Stimulation Using Neural Dosing Parameter Relationships: The HALO Study.
- José Paz-Solís, Simon Thomson, Roshini Jain, Lilly Chen, Ismael Huertas, and Que Doan.
- University Hospital La Paz, Madrid, Spain.
- Neuromodulation. 2022 Jan 1; 25 (1): 94-102.
ObjectivesSubperception spinal cord stimulation (SCS) is described mostly utilizing waveforms that require high energy. However, the necessity of these waveforms for effective subperception has not been established. We aimed to explore whether effective subperception pain relief can be achieved using frequencies below 1 kHz.Materials And MethodsThirty chronic pain patients implanted with SCS were enrolled as part of a multicenter, real-world, consecutive, observational case series. An effective stimulation location was determined using a novel electric field shape designed to preferentially modulate dorsal horn elements. Subsequently, programs at lower frequencies (600, 400, 200, 100, 50, and 10 Hz) were provided with pulse-width and amplitude adjusted to optimize response.ResultsAll tested frequencies (1 kHz down to 10 Hz) provided effective subperception relief, yielding a mean of 66-72% reduction in back, leg, and overall pain. It was found that to maintain analgesia, as frequency was decreased, the electrical or "neural" dose had to be adjusted according to parameter relationships described herein. With the reduction of frequency, we observed a net reduction of charge-per-second, which enabled energy savings of 74% (200 Hz) and 97% (10 Hz) relative to 1 kHz. Furthermore, pain reduction was sustained out to one year, with 85% of patients reporting a preference for frequencies of 400 Hz or below.ConclusionsWe have derived an electric field configuration and, along with previous learnings in the kHz range, a set of neural dosing parameter relationships (10-10,000 Hz), which enable the expansion of effective subperception SCS to low frequency and achieve major energy savings.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.