• JAMA network open · Mar 2019

    Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.

    • Wei-Hsuan Lo-Ciganic, James L Huang, Hao H Zhang, Jeremy C Weiss, Yonghui Wu, C Kent Kwoh, Julie M Donohue, Gerald Cochran, Adam J Gordon, Daniel C Malone, Courtney C Kuza, and Walid F Gellad.
    • Department of Pharmaceutical Outcomes & Policy, College of Pharmacy, University of Florida, Gainesville.
    • JAMA Netw Open. 2019 Mar 1; 2 (3): e190968.

    ImportanceCurrent approaches to identifying individuals at high risk for opioid overdose target many patients who are not truly at high risk.ObjectiveTo develop and validate a machine-learning algorithm to predict opioid overdose risk among Medicare beneficiaries with at least 1 opioid prescription.Design, Setting, And ParticipantsA prognostic study was conducted between September 1, 2017, and December 31, 2018. Participants (n = 560 057) included fee-for-service Medicare beneficiaries without cancer who filled 1 or more opioid prescriptions from January 1, 2011, to December 31, 2015. Beneficiaries were randomly and equally divided into training, testing, and validation samples.ExposuresPotential predictors (n = 268), including sociodemographics, health status, patterns of opioid use, and practitioner-level and regional-level factors, were measured in 3-month windows, starting 3 months before initiating opioids until loss of follow-up or the end of observation.Main Outcomes And MeasuresOpioid overdose episodes from inpatient and emergency department claims were identified. Multivariate logistic regression (MLR), least absolute shrinkage and selection operator-type regression (LASSO), random forest (RF), gradient boosting machine (GBM), and deep neural network (DNN) were applied to predict overdose risk in the subsequent 3 months after initiation of treatment with prescription opioids. Prediction performance was assessed using the C statistic and other metrics (eg, sensitivity, specificity, and number needed to evaluate [NNE] to identify one overdose). The Youden index was used to identify the optimized threshold of predicted score that balanced sensitivity and specificity.ResultsBeneficiaries in the training (n = 186 686), testing (n = 186 685), and validation (n = 186 686) samples had similar characteristics (mean [SD] age of 68.0 [14.5] years, and approximately 63% were female, 82% were white, 35% had disabilities, 41% were dual eligible, and 0.60% had at least 1 overdose episode). In the validation sample, the DNN (C statistic = 0.91; 95% CI, 0.88-0.93) and GBM (C statistic = 0.90; 95% CI, 0.87-0.94) algorithms outperformed the LASSO (C statistic = 0.84; 95% CI, 0.80-0.89), RF (C statistic = 0.80; 95% CI, 0.75-0.84), and MLR (C statistic = 0.75; 95% CI, 0.69-0.80) methods for predicting opioid overdose. At the optimized sensitivity and specificity, DNN had a sensitivity of 92.3%, specificity of 75.7%, NNE of 542, positive predictive value of 0.18%, and negative predictive value of 99.9%. The DNN classified patients into low-risk (76.2% [142 180] of the cohort), medium-risk (18.6% [34 579] of the cohort), and high-risk (5.2% [9747] of the cohort) subgroups, with only 1 in 10 000 in the low-risk subgroup having an overdose episode. More than 90% of overdose episodes occurred in the high-risk and medium-risk subgroups, although positive predictive values were low, given the rare overdose outcome.Conclusions And RelevanceMachine-learning algorithms appear to perform well for risk prediction and stratification of opioid overdose, especially in identifying low-risk subgroups that have minimal risk of overdose.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.