• Spine · Dec 2021

    Biomechanical Investigation of Lumbar Interbody Fusion Supplemented with Topping-Off Instrumentation Using Different Dynamic Stabilization Devices.

    • Wei Fan and Li-Xin Guo.
    • School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China.
    • Spine. 2021 Dec 15; 46 (24): E1311E1319E1311-E1319.

    Study DesignA biomechanical comparison study using finite element method.ObjectiveThe aim of this study was to investigate effects of different dynamic stabilization devices, including pedicle-based dynamic stabilization system (PBDSS) and interspinous process spacer (ISP), used for topping-off implants on biomechanical responses of human spine after lumbar interbody fusion.Summary Of Background DataTopping-off stabilization technique has been proposed to prevent adjacent segment degeneration following lumbar spine fusion. PBDSS and ISP are the most used dynamic stabilizers for topping-off instrumentation. However, biomechanical differences between them still remain unclear.MethodsA validated, normal FE model of human lumbosacral spine was employed. Based on this model, rigid fusion at L4-L5 and moderately disc degeneration at L3-L4 were simulated and used as a comparison baseline. Subsequently, Bioflex and DIAM systems were instrumented at L3-L4 segment to construct PBDSS-based and ISP-based topping-off models. Biomechanical responses of the models to bending moments and vertical vibrational excitation were computed using FE static and random response analyses, respectively.ResultsResults from static analysis showed that at L3-L4, the response parameters including annulus stress and range of motion were decreased by 41.6% to 85.2% for PBDSS-based model and by 6.3% to 67% for ISP-based model compared with rigid fusion model. At L2-L3, these parameters were lower in ISP-based model than in PBDSS-based model. Results from random response analysis showed that topping-off instrumentation increased resonant frequency of spine system but decreased dynamic response of annulus stress at L3-L4. PBDSS-based model generated lower dynamic stress than ISP-based model at L3-L4, but the dynamic stress was higher at L2-L3 for PBDSSbased model.ConclusionUnder static and vibration loadings, the PBDSSbased topping-off device (Bioflex) provided a better protection for transition segment, and likelihood of degeneration of supraadjacent segment might be relatively lower when using the ISPbased topping-off device (DIAM).Level of Evidence: 5.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.