-
- Qian Cheng, Nilay Tanik Argon, Christopher Scott Evans, Yufeng Liu, Timothy F Platts-Mills, and Serhan Ziya.
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill (UNC), NC, USA. Electronic address: qcheng@email.unc.edu.
- Am J Emerg Med. 2021 Oct 1; 48: 177-182.
Study ObjectiveTo develop a novel predictive model for emergency department (ED) hourly occupancy using readily available data at time of prediction with a time series analysis methodology.MethodsWe performed a retrospective analysis of all ED visits from a large academic center during calendar year 2012 to predict ED hourly occupancy. Due to the time-of-day and day-of-week effects, a seasonal autoregressive integrated moving average with external regressor (SARIMAX) model was selected. For each hour of a day, a SARIMAX model was built to predict ED occupancy up to 4-h ahead. We compared the resulting model forecast accuracy and prediction intervals with previously studied time series forecasting methods.ResultsThe study population included 65,132 ED visits at a large academic medical center during the year 2012. All adult ED visits during the first 265 days were used as a training dataset, while the remaining ED visits comprised the testing dataset. A SARIMAX model performed best with external regressors of current ED occupancy, average department-wide ESI, and ED boarding total at predicting up to 4-h-ahead ED occupancy (Mean Square Error (MSE) of 16.20, and 64.47 for 1-hr- and 4-h- ahead occupancy, respectively). Our 24-SARIMAX model outperformed other popular time series forecasting techniques, including a 60% improvement in MSE over the commonly used rolling average method, while maintaining similar prediction intervals.ConclusionAccounting for current ED occupancy, average department-wide ESI, and boarding total, a 24-SARIMAX model was able to provide up to 4 h ahead predictions of ED occupancy with improved performance characteristics compared to other forecasting methods, including the rolling average. The prediction intervals generated by this method used data readily available in most EDs and suggest a promising new technique to forecast ED occupancy in real time.Copyright © 2021 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.