• Stud Health Technol Inform · Jan 2015

    Automated Detection of Postoperative Surgical Site Infections Using Supervised Methods with Electronic Health Record Data.

    • Zhen Hu, Gyorgy J Simon, Elliot G Arsoniadis, Yan Wang, Mary R Kwaan, and Genevieve B Melton.
    • Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA.
    • Stud Health Technol Inform. 2015 Jan 1; 216: 706-10.

    AbstractThe National Surgical Quality Improvement Project (NSQIP) is widely recognized as "the best in the nation" surgical quality improvement resource in the United States. In particular, it rigorously defines postoperative morbidity outcomes, including surgical adverse events occurring within 30 days of surgery. Due to its manual yet expensive construction process, the NSQIP registry is of exceptionally high quality, but its high cost remains a significant bottleneck to NSQIP's wider dissemination. In this work, we propose an automated surgical adverse events detection tool, aimed at accelerating the process of extracting postoperative outcomes from medical charts. As a prototype system, we combined local EHR data with the NSQIP gold standard outcomes and developed machine learned models to retrospectively detect Surgical Site Infections (SSI), a particular family of adverse events that NSQIP extracts. The built models have high specificity (from 0.788 to 0.988) as well as very high negative predictive values (>0.98), reliably eliminating the vast majority of patients without SSI, thereby significantly reducing the NSQIP extractors' burden.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…