• EBioMedicine · Aug 2019

    Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia.

    • Marc Clos-Garcia, Naiara Andrés-Marin, Gorka Fernández-Eulate, Leticia Abecia, José L Lavín, Sebastiaan van Liempd, Diana Cabrera, Félix Royo, Alejandro Valero, Nerea Errazquin, María Cristina Gómez Vega, Leila Govillard, Michael R Tackett, Genesis Tejada, Esperanza Gónzalez, Juan Anguita, Luis Bujanda, Ana María Callejo Orcasitas, Ana M Aransay, Olga Maíz, Adolfo López de Munain, and Juan Manuel Falcón-Pérez.
    • Exosomes Laboratory, CIC bioGUNE, CIBERehd, Bizkaia Technology Park, Derio, Spain; Department of Gastroenterology, Instituto Biodonostia, Universidad del País Vasco (UPV/EHU), CIBERehd (Centro de investigación en red de enfermedades hepáticas y digestiva) San Sebastian, Spain. Electronic address: mclos.biodonostia@cicbiogune.es.
    • EBioMedicine. 2019 Aug 1; 46: 499-511.

    BackgroundFibromyalgia is a complex, relatively unknown disease characterised by chronic, widespread musculoskeletal pain. The gut-brain axis connects the gut microbiome with the brain through the enteric nervous system (ENS); its disruption has been associated with psychiatric and gastrointestinal disorders. To gain an insight into the pathogenesis of fibromyalgia and identify diagnostic biomarkers, we combined different omics techniques to analyse microbiome and serum composition.MethodsWe collected faeces and blood samples to study the microbiome, the serum metabolome and circulating cytokines and miRNAs from a cohort of 105 fibromyalgia patients and 54 age- and environment-matched healthy individuals. We sequenced the V3 and V4 regions of the 16S rDNA gene from faeces samples. UPLC-MS metabolomics and custom multiplex cytokine and miRNA analysis (FirePlex™ technology) were used to examine sera samples. Finally, we combined the different data types to search for potential biomarkers.ResultsWe found that the diversity of bacteria is reduced in fibromyalgia patients. The abundance of the Bifidobacterium and Eubacterium genera (bacteria participating in the metabolism of neurotransmitters in the host) in these patients was significantly reduced. The serum metabolome analysis revealed altered levels of glutamate and serine, suggesting changes in neurotransmitter metabolism. The combined serum metabolomics and gut microbiome datasets showed a certain degree of correlation, reflecting the effect of the microbiome on metabolic activity. We also examined the microbiome and serum metabolites, cytokines and miRNAs as potential sources of molecular biomarkers of fibromyalgia.ConclusionsOur results show that the microbiome analysis provides more significant biomarkers than the other techniques employed in the work. Gut microbiome analysis combined with serum metabolomics can shed new light onto the pathogenesis of fibromyalgia. We provide a list of bacteria whose abundance changes in this disease and propose several molecules as potential biomarkers that can be used to evaluate the current diagnostic criteria.Copyright © 2019. Published by Elsevier B.V.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…