• Neurosurg Focus · May 2019

    Machine learning-based preoperative predictive analytics for lumbar spinal stenosis.

    • Alessandro Siccoli, Marlies P de Wispelaere, Marc L Schröder, and Victor E Staartjes.
    • 1Department of Neurosurgery, Bergman Clinics, Amsterdam.
    • Neurosurg Focus. 2019 May 1; 46 (5): E5.

    AbstractOBJECTIVEPatient-reported outcome measures (PROMs) following decompression surgery for lumbar spinal stenosis (LSS) demonstrate considerable heterogeneity. Individualized prediction tools can provide valuable insights for shared decision-making. The authors aim to evaluate the feasibility of predicting short- and long-term PROMs, reoperations, and perioperative parameters by machine learning (ML) methods.METHODSData were derived from a prospective registry. All patients had undergone single- or multilevel mini-open facet-sparing decompression for LSS. The prediction models were trained using various ML-based algorithms to predict the endpoints of interest. Models were selected by area under the receiver operating characteristic curve (AUC). The endpoints were dichotomized by minimum clinically important difference (MCID) and included 6-week and 12-month numeric rating scales for back pain (NRS-BP) and leg pain (NRS-LP) severity and the Oswestry Disability Index (ODI), as well as prolonged surgery (> 45 minutes), extended length of hospital stay (> 28 hours), and reoperations.RESULTSA total of 635 patients were included. The average age was 62 ± 10 years, and 333 patients (52%) were male. At 6 weeks, MCID was seen in 63%, 76%, and 61% of patients for ODI, NRS-LP, and NRS-BP, respectively. At internal validation, the models predicted MCID in these variables with accuracies of 69%, 76%, and 85%, and with AUCs of 0.75, 0.79, and 0.92. At 12 months, 66%, 63%, and 51% of patients reported MCID; the observed accuracies were 62%, 74%, and 66%, with AUCs of 0.68, 0.72, and 0.79. Reoperations occurred in 60 patients (9.5%), of which 27 (4.3%) occurred at the index level. Overall and index-level reoperations were predicted with 69% and 63% accuracy, respectively, and with AUCs of 0.66 and 0.61. In 15%, a length of surgery greater than 45 minutes was observed and predicted with 78% accuracy and AUC of 0.54. Only 15% of patients were admitted to the hospital for longer than 28 hours. The developed ML-based model enabled prediction of extended hospital stay with an accuracy of 77% and AUC of 0.58.CONCLUSIONSPreoperative prediction of a range of clinically relevant endpoints in decompression surgery for LSS using ML is feasible, and may enable enhanced informed patient consent and personalized shared decision-making. Access to individualized preoperative predictive analytics for outcome and treatment risks may represent a further step in the evolution of surgical care for patients with LSS.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…