-
- Jacob C Jentzer, Anthony H Kashou, Zachi I Attia, Francisco Lopez-Jimenez, Suraj Kapa, Paul A Friedman, and Peter A Noseworthy.
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States of America; Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, United States of America. Electronic address: jentzer.jacob@mayo.edu.
- Int. J. Cardiol. 2021 Mar 1; 326: 114-123.
BackgroundAn artificial intelligence-augmented electrocardiogram (AI-ECG) can identify left ventricular systolic dysfunction (LVSD). We examined the accuracy of AI ECG for identification of LVSD (defined as LVEF ≤40% by transthoracic echocardiogram [TTE]) in cardiac intensive care unit (CICU) patients.MethodWe included unique Mayo Clinic CICU patients admitted from 2007 to 2018 who underwent AI-ECG and TTE within 7 days, at least one of which was during hospitalization. Discrimination of the AI-ECG for LVSD was determined using receiver-operator characteristic curve (AUC) values.ResultsWe included 5680 patients with a mean age of 68 ± 15 years (37% females). Acute coronary syndrome (ACS) was present in 55%. LVSD was present in 34% of patients (mean LVEF 48 ± 16%). The AI-ECG had an AUC of 0.83 (95% confidence interval 0.82-0.84) for discrimination of LVSD. Using the optimal cut-off, the AI-ECG had 73%, specificity 78%, negative predictive value 85% and overall accuracy 76% for LVSD. AUC values were higher for patients aged <70 years (0.85 versus 0.80), males (0.84 versus 0.79), patients without ACS (0.86 versus 0.80), and patients who did not undergo revascularization (0.84 versus 0.80).ConclusionsThe AI-ECG algorithm had very good discrimination for LVSD in this critically-ill CICU cohort with a high prevalence of LVSD. Performance was better in younger male patients and those without ACS, highlighting those CICU patients in whom screening for LVSD using AI ECG may be more effective. The AI-ECG might potentially be useful for identification of LVSD in resource-limited settings when TTE is unavailable.Copyright © 2020 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.