• Circ Arrhythm Electrophysiol · Aug 2020

    Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea.

    • Demilade Adedinsewo, Rickey E Carter, Zachi Attia, Patrick Johnson, Anthony H Kashou, Jennifer L Dugan, Michael Albus, Johnathan M Sheele, Fernanda Bellolio, Paul A Friedman, Francisco Lopez-Jimenez, and Peter A Noseworthy.
    • Division of Cardiovascular Medicine (D.A.), Mayo Clinic, Jacksonville, FL.
    • Circ Arrhythm Electrophysiol. 2020 Aug 1; 13 (8): e008437.

    BackgroundIdentification of systolic heart failure among patients presenting to the emergency department (ED) with acute dyspnea is challenging. The reasons for dyspnea are often multifactorial. A focused physical evaluation and diagnostic testing can lack sensitivity and specificity. The objective of this study was to assess the accuracy of an artificial intelligence-enabled ECG to identify patients presenting with dyspnea who have left ventricular systolic dysfunction (LVSD).MethodsWe retrospectively applied a validated artificial intelligence-enabled ECG algorithm for the identification of LVSD (defined as LV ejection fraction ≤35%) to a cohort of patients aged ≥18 years who were evaluated in the ED at a Mayo Clinic site with dyspnea. Patients were included if they had at least one standard 12-lead ECG acquired on the date of the ED visit and an echocardiogram performed within 30 days of presentation. Patients with prior LVSD were excluded. We assessed the model performance using area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity.ResultsA total of 1606 patients were included. Median time from ECG to echocardiogram was 1 day (Q1: 1, Q3: 2). The artificial intelligence-enabled ECG algorithm identified LVSD with an area under the receiver operating characteristic curve of 0.89 (95% CI, 0.86-0.91) and accuracy of 85.9%. Sensitivity, specificity, negative predictive value, and positive predictive value were 74%, 87%, 97%, and 40%, respectively. To identify an ejection fraction <50%, the area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity were 0.85 (95% CI, 0.83-0.88), 86%, 63%, and 91%, respectively. NT-proBNP (N-terminal pro-B-type natriuretic peptide) alone at a cutoff of >800 identified LVSD with an area under the receiver operating characteristic curve of 0.80 (95% CI, 0.76-0.84).ConclusionsThe ECG is an inexpensive, ubiquitous, painless test which can be quickly obtained in the ED. It effectively identifies LVSD in selected patients presenting to the ED with dyspnea when analyzed with artificial intelligence and outperforms NT-proBNP. Graphic Abstract: A graphic abstract is available for this article.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.