• Eur Heart J Acute Cardiovasc Care · Jun 2021

    Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients.

    • Jacob C Jentzer, Anthony H Kashou, Francisco Lopez-Jimenez, Zachi I Attia, Suraj Kapa, Paul A Friedman, and Peter A Noseworthy.
    • Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
    • Eur Heart J Acute Cardiovasc Care. 2021 Jun 30; 10 (5): 532-541.

    AimsAn artificial intelligence-augmented electrocardiogram (AI-ECG) algorithm can identify left ventricular systolic dysfunction (LVSD). We sought to determine whether this AI-ECG algorithm could stratify mortality risk in cardiac intensive care unit (CICU) patients, independent of the presence of LVSD by transthoracic echocardiography (TTE).Methods And ResultsWe included 11 266 unique Mayo Clinic CICU patients admitted from 2007 to 2018 who underwent AI-ECG after CICU admission. Left ventricular ejection fraction (LVEF) data were extracted for patients with a TTE during hospitalization. Hospital mortality was analysed using multivariable logistic regression. Mean age was 68 ± 15 years, including 37% females. Higher AI-ECG probability of LVSD remained associated with higher hospital mortality [adjusted odds ratio (OR) 1.05 per 0.1 higher, 95% confidence interval (CI) 1.02-1.08, P = 0.003] after adjustment for LVEF, which itself was inversely related with the risk of hospital mortality (adjusted OR 0.96 per 5% higher, 95% CI 0.93-0.99, P = 0.02). Patients with available LVEF data (n = 8242) were divided based on the presence of predicted (by AI-ECG) vs. observed (by TTE) LVSD (defined as LVEF ≤ 35%), using TTE as the gold standard. A stepwise increase in hospital mortality was observed for patients with a true negative, false positive, false negative, and true positive AI-ECG.ConclusionThe AI-ECG prediction of LVSD is associated with hospital mortality in CICU patients, affording risk stratification in addition to that provided by echocardiographic LVEF. Our results emphasize the prognostic value of electrocardiographic patterns reflecting underlying myocardial disease that are recognized by the AI-ECG.Published on behalf of the European Society of Cardiology. All rights reserved. © The Author(s) 2020. For permissions, please email: journals.permissions@oup.com.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.