• Hippocampus · Sep 2019

    A model of cholinergic suppression of hippocampal ripples through disruption of balanced excitation/inhibition.

    • Eric D Melonakos, John A White, and Fernando R Fernandez.
    • Department of Bioengineering, University of Utah, Salt Lake City, Utah.
    • Hippocampus. 2019 Sep 1; 29 (9): 773-786.

    AbstractSharp wave-ripples (140-220 Hz) are patterns of brain activity observed in the local field potential of the hippocampus which are present during memory consolidation. As rodents switch from memory consolidation to memory encoding behaviors, cholinergic inputs to the hippocampus from neurons in the medial septum-diagonal band of Broca cause a marked reduction in ripple incidence. The mechanism for this disruption in ripple power is not fully understood. In isolated neurons, the major effect of cholinergic input on hippocampal neurons is depolarization of the membrane potential, which affects both hippocampal pyramidal neurons and inhibitory interneurons. Using an existing model of ripple-frequency oscillations that includes both pyramidal neurons and interneurons, we investigated the mechanism whereby depolarizing inputs to these neurons can affect ripple power and frequency. We observed that ripple power and frequency are maintained, as long as inputs to pyramidal neurons and interneurons are balanced. Preferential drive to pyramidal neurons or interneurons, however, affects ripple power and can disrupt ripple oscillations by pushing ripple frequency higher or lower. Thus, an imbalance in drive to pyramidal neurons and interneurons provides a means whereby cholinergic input can suppress hippocampal ripples.© 2018 Wiley Periodicals, Inc.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.