• Int. J. Pediatr. Otorhinolaryngol. · Sep 2016

    Multicenter Study

    Quality improvement utilizing in-situ simulation for a dual-hospital pediatric code response team.

    • Phoebe Yager, Corey Collins, Carlene Blais, Kathy O'Connor, Patricia Donovan, Maureen Martinez, Brian Cummings, Christopher Hartnick, and Natan Noviski.
    • MassGeneral Hospital for Children, 175 Cambridge Street, CPZS-5, Boston, MA 02114, USA. Electronic address: pyager@partners.org.
    • Int. J. Pediatr. Otorhinolaryngol. 2016 Sep 1; 88: 42-6.

    ObjectiveGiven the rarity of in-hospital pediatric emergency events, identification of gaps and inefficiencies in the code response can be difficult. In-situ, simulation-based medical education programs can identify unrecognized systems-based challenges. We hypothesized that developing an in-situ, simulation-based pediatric emergency response program would identify latent inefficiencies in a complex, dual-hospital pediatric code response system and allow rapid intervention testing to improve performance before implementation at an institutional level.MethodsPediatric leadership from two hospitals with a shared pediatric code response team employed the Institute for Healthcare Improvement's (IHI) Breakthrough Model for Collaborative Improvement to design a program consisting of Plan-Do-Study-Act cycles occurring in a simulated environment. The objectives of the program were to 1) identify inefficiencies in our pediatric code response; 2) correlate to current workflow; 3) employ an iterative process to test quality improvement interventions in a safe environment; and 4) measure performance before actual implementation at the institutional level.ResultsTwelve dual-hospital, in-situ, simulated, pediatric emergencies occurred over one year. The initial simulated event allowed identification of inefficiencies including delayed provider response, delayed initiation of cardiopulmonary resuscitation (CPR), and delayed vascular access. These gaps were linked to process issues including unreliable code pager activation, slow elevator response, and lack of responder familiarity with layout and contents of code cart. From first to last simulation with multiple simulated process improvements, code response time for secondary providers coming from the second hospital decreased from 29 to 7 min, time to CPR initiation decreased from 90 to 15 s, and vascular access obtainment decreased from 15 to 3 min. Some of these simulated process improvements were adopted into the institutional response while others continue to be trended over time for evidence that observed changes represent a true new state of control.ConclusionsUtilizing the IHI's Breakthrough Model, we developed a simulation-based program to 1) successfully identify gaps and inefficiencies in a complex, dual-hospital, pediatric code response system and 2) provide an environment in which to safely test quality improvement interventions before institutional dissemination.Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…