-
Randomized Controlled Trial Clinical Trial
Cardiopulmonary bypass circuit treated with surface-modifying additives: a clinical evaluation of blood compatibility.
- Y J Gu, P W Boonstra, A A Rijnsburger, J Haan, and W van Oeveren.
- Department of Cardiothoracic Surgery, Thorax Center, University Hospital Groningen, The Netherlands.
- Ann. Thorac. Surg. 1998 May 1; 65 (5): 1342-7.
BackgroundThe cardiopulmonary bypass (CPB) circuit induces blood activation and a systemic inflammatory response in cardiac surgical patients. The CPB circuit treated with surface-modifying additive (SMA) has been found to reduce blood activation by in vitro and ex vivo experiments. This study evaluates the surface thrombogenicity and complement activation of SMA circuits during clinical CPB.MethodsTwenty patients undergoing coronary artery bypass grafting were randomly divided into two groups. In the SMA group (n = 10), all blood-contacting surfaces in the CPB circuit were treated or coated with SMA, whereas in the control group (n = 10) patients were perfused with an identical circuit without treatment.ResultsDuring CPB, platelet count and beta-thromboglobulin were found similar in both the SMA and the control groups. Prothrombin activation indicated by fragment F1 + 2 was found less in the SMA group (p < 0.05). After CPB, platelet deposition on the CPB circuit was significantly less (p < 0.05) in the SMA group than in the control group as assessed by the labeled monoclonal antibody against platelet glycoprotein IIIa. Complement activation identified by C3a and terminal complex C5b-9 did not differ between the two groups, but C4a generation was less in the SMA group (p < 0.05). Leukocyte activation identified by elastase and cytokine release indicated by interleukin-8 were found uniformly in both groups. Postoperatively, chest tube drainage, blood transfusion, duration of ventilatory support, as well as the intensive care unit and hospital stay were not significantly different between the two groups.ConclusionsThese preliminary clinical results suggest that SMA inhibits platelet interaction with the biomaterial surface of the CPB circuit. Complement activation assessed by the terminal complement complex is not influenced by SMA. The clinical benefit of this surface-modifying technique has yet to be assessed in a larger population of patients undergoing cardiac operations.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.