• Spine · Dec 2021

    Multifidus Muscle Fibre Type Distribution is Changed in Mouse Models of Chronic Intervertebral Disc Degeneration, but is not Attenuated by Whole Body Physical Activity.

    • Gregory James, Magali Millecamps, Laura S Stone, and Paul W Hodges.
    • The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia.
    • Spine. 2021 Dec 1; 46 (23): 161216201612-1620.

    Study DesignCase-controlled animal study.ObjectiveThe aim of this study was to investigate whether multifidus muscle fiber type distribution changes in models of interverbal disc (IVD) degeneration and whether this is resolved by physical activity (PA).Summary Of Background DataThe loss of slow type I muscle fibers in the multifidus muscle in people with low back pain is contentious. Data from animal models of IVD degeneration suggest some discrepancies in human studies might be explained by the dependence of slow muscle fiber changes and their underlying mechanisms, on the time since injury and progression of IVD degeneration. It is not yet resolved what changes are apparent once the chronic phase is established. It is also not known whether muscle fiber changes can be resolved by whole body PA. This study aimed to examine slow fiber distribution in the multifidus muscle in models of IVD injury or spontaneous degeneration in animals with or without exposure to PA.MethodsTwo models of IVD degeneration were used. The first model used a genetically modified mouse (SPARC-null) that spontaneously develops IVD degeneration. The second model involved a surgically induced IVD lesion to induce degeneration. Mice in each study were allocated to housing with or without a running wheel for PA. At 12 months of age, the multifidus muscle was harvested. Slow muscle fiber distribution and the mRNA expression of genes associated with muscle fiber type transformation were examined.ResultsThe proportion and cross-sectional area of slow muscle fibers were reduced in both models of IVD degeneration compared to controls, without evidence of ongoing fiber transformation. Whole-body PA did not attenuate these alterations.ConclusionResults confirmed slow muscle fiber loss in the multifidus in the chronic phase of IVD degeneration induced spontaneously and by injury. Whole-body PA did not attenuate changes to muscle fiber distribution. More specific approaches to muscle activation might be required to achieve more complete reversal of muscle fiber changes, with potential implications for therapy in humans.Level of Evidence: N/A.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.