• Biochem. Soc. Trans. · Apr 2010

    Review

    Synaptic dysfunction in Parkinson's disease.

    • Vincenza Bagetta, Veronica Ghiglieri, Carmelo Sgobio, Paolo Calabresi, and Barbara Picconi.
    • Laboratorio di Neurofisiologia, Fondazione Santa Lucia, I.R.C.C.S., 00143 Rome, Italy.
    • Biochem. Soc. Trans. 2010 Apr 1; 38 (2): 493-7.

    AbstractIn neuronal circuits, memory storage depends on activity-dependent modifications in synaptic efficacy, such as LTD (long-term depression) and LTP (long-term potentiation), the two main forms of synaptic plasticity in the brain. In the nucleus striatum, LTD and LTP represent key cellular substrates for adaptive motor control and procedural memory. It has been suggested that their impairment could account for the onset and progression of motor symptoms of PD (Parkinson's disease), a neurodegenerative disorder characterized by the massive degeneration of dopaminergic neurons projecting to the striatum. In fact, a peculiar aspect of striatal plasticity is the modulation exerted by DA (dopamine) on LTP and LTD. Our understanding of these maladaptive forms of plasticity has mostly come from the electrophysiological, molecular and behavioural analyses of experimental animal models of PD. In PD, a host of cellular and synaptic changes occur in the striatum in response to the massive loss of DA innervation. Chronic L-dopa therapy restores physiological synaptic plasticity and behaviour in treated PD animals, but most of them, similarly to patients, exhibit a reduction in the efficacy of the drug and disabling AIMs (abnormal involuntary movements) defined, as a whole, as L-dopa-induced dyskinesia. In those animals experiencing AIMs, synaptic plasticity is altered and is paralleled by modifications in the postsynaptic compartment. In particular, dysfunctions in trafficking and subunit composition of NMDARs [NMDA (N-methyl-D-aspartate) receptors] on striatal efferent neurons result from chronic non-physiological dopaminergic stimulation and contribute to the pathogenesis of dyskinesias. According to these pathophysiological concepts, therapeutic strategies targeting signalling proteins coupled to NMDARs within striatal spiny neurons could represent new pharmaceutical interventions for PD and L-dopa-induced dyskinesia.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…