• IEEE Trans Biomed Eng · Dec 2002

    Rigorous Green's function formulation for transmembrane potential induced along a 3-D infinite cylindrical cell.

    • Leonid M Livshitz, Pinchas D Einziger, and Joseph Mizrahi.
    • Department of Biomedical Engineering, Technion, Israel Institute of Technology, Haifa 32000, Israel.
    • IEEE Trans Biomed Eng. 2002 Dec 1; 49 (12 Pt 2): 1491-503.

    AbstractThe quasi-static electromagnetic field interaction with three-dimensional infinite-cylindrical cell is investigated for both intracellular (IPS) and extracellular (EPS) current point-source excitation. The induced transmembrane potential (TMP), expressed conventionally via Green's function, may alternatively be expanded into a faster-converging representation using a complex contour integration, consisting of an infinite-discrete set of exponentially decaying oscillating modes (corresponding to complex eigenvalues) and a continuous source-mode convolution integral. The dominant contributions for both the IPS and EPS problems are obtained in simple closed-form expressions, including well documented special mathematical functions. In the IPS case, the dominant modal contribution (of order zero)--an exact solution of the well-known cable equation--is explicitly and analytically corrected by the imaginary part of its eigenvalue and the source-mode convolution contribution. However, the TMP along a fiber was shown to decay at infinity algebraically and not exponentially, as predicted by the classic cable equation solution. In the EPS case, the dominant contribution is expressed as a source-mode convolution integral. However, for a long EPS distance (e.g., >10 cable length constant) the order-one-modes involved in the convolution is not a solution of the cable equation. Only for shorter EPS distance should the cable equation solution (i.e., the order zero dominant mode) be included in addition to the modes of order one. For on-membrane EPS location, additional modes should be included as well. In view of our EPS result, we suggest that the cable equation modeling existing in the literature and related to functional electrical stimulation for EPS problems, should be critically reviewed and corrected.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.