• IEEE Trans Biomed Eng · Mar 2007

    Encoding of information into neural spike trains in an auditory nerve fiber model with electric stimuli in the presence of a pseudospontaneous activity.

    • Hiroyuki Mino.
    • Department of Electrical and Computer Engineering, Kanto Gakuin University, 1-50-1 Mutsuura E., Kanazawa-ku, Yokohama 236-8501, Japan. mino@ieee.org
    • IEEE Trans Biomed Eng. 2007 Mar 1; 54 (3): 360-9.

    AbstractThis paper presents an information-theoretic analysis of neural spike trains in an auditory nerve fiber (ANF) model stimulated extracellularly with Gaussian or sinusoidal waveforms in the presence of a pseudospontaneous activity of spike firings. In the computer simulation, stimulus current waveforms were applied repeatedly to a stimulating electrode located 1 mm above the 26th node of Ranvier, in an ANF axon model having 50 nodes of Ranvier, each consisting of stochastic sodium and potassium channels. From spike firing times recorded at the 36th node of Ranvier, a post-stimulus time histogram (PSTH) was generated, and raster plots were depicted for 30 stimulus presentations, in order to investigate the temporal precision and reliability of the spike firing times. Also, inter spike intervals were generated and then "total" and "noise" entropies were estimated to obtain the mutual information and the information rate of the spike trains. It was shown in the case of Gaussian electric stimuli that the temporal precision of spike firing times and the reliability of spike firings were found to increase as the standard deviation (SD) of the Gaussian electric stimuli increased. It was also shown in the case of sinusoidal electric stimuli where there was a specific amplitude of sinusoidal waveforms, the information rate being maximized. It was implied that setting the parameters of electric stimuli to the specific values which maximize the information rate might contribute to efficiently encoding information into the spike trains in the presence of a pseudospontaneous activity of spike firings.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.