• Brain Behav. Immun. · Nov 2016

    Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin.

    • Min-Xuan Xu, Rong Yu, Li-Fei Shao, Yan-Xiu Zhang, Chen-Xu Ge, Xin-Meng Liu, Wen-Yuan Wu, Jian-Mei Li, and Ling-Dong Kong.
    • State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
    • Brain Behav. Immun. 2016 Nov 1; 58: 69-81.

    AbstractRecent studies suggest that diet-induced fractalkine (FKN) stimulates neuroinflammation in animal models of obesity, yet how it occurs is unclear. This study investigated the role of FKN and it receptor, CX3CR1, in fructose-induced neuroinflammation, and examined curcumin's beneficial effect. Fructose feeding was found to induce hippocampal microglia activation with neuroinflammation through the activation of the Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling, resulting in the reduction of neurogenesis in the dentate gyrus (DG) of mice. Serum FKN levels, as well as hypothalamic FKN and CX3CR1 gene expression, were significantly increased in fructose-fed mice with hypothalamic microglia activation. Hippocampal gene expression of FKN and CX3CR1 was also up-regulated at 14d and normalized at 56d in mice fed with fructose, which were consistent with the change of GFAP. Furthermore, immunostaining showed that GFAP and FKN expression was increased in cornu amonis 1, but decreased in DG in fructose-fed mice. In vitro studies showed that GFAP and FKN expression was stimulated in astrocytes, and suppressed in mixed glial cells exposed to 48h-fructose, with the continual increase of pro-inflammatory cytokines. Thus, increased FKN and CX3CR1 may cause a cross-talk between activated glial cells and neurons, playing an important role in the development of neuroinflammation in fructose-fed mice. Curcumin protected against neuronal damage in hippocampal DG of fructose-fed mice by inhibiting microglia activation and suppressed FKN/CX3CR1 up-regulation in the neuronal network. These results suggest a new therapeutic approach to protect against neuronal damage associated with dietary obesity-associated neuroinflammation.Copyright © 2016 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.