• Surgery · Aug 2020

    Summary perioperative risk metrics within the electronic medical record predict patient-level cost variation in pancreaticoduodenectomy.

    • Christopher C Stahl, Patrick B Schwartz, Glen E Leverson, James R Barrett, Taylor Aiken, Alexandra W Acher, Sean M Ronnekleiv-Kelly, Rebecca M Minter, Sharon M Weber, and Daniel E Abbott.
    • Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI.
    • Surgery. 2020 Aug 1; 168 (2): 274-279.

    BackgroundAutomated data extraction from the electronic medical record is fast, scalable, and inexpensive compared with manual abstraction. However, concerns regarding data quality and control for underlying patient variation when performing retrospective analyses exist. This study assesses the ability of summary electronic medical record metrics to control for patient-level variation in cost outcomes in pancreaticoduodenectomy.MethodsPatients that underwent pancreaticoduodenectomy from 2014 to 2018 at a single institution were identified within the electronic medical record and linked with the National Surgical Quality Improvement Program. Variables in both data sets were compared using interrater reliability. Logistic and linear regression modelling of complications and costs were performed using combinations of comorbidities/summary metrics. Models were compared using the adjusted R2 and Akaike information criterion.ResultsA total of 117 patients populated the final data set. A total of 31 (26.5%) patients experienced a complication identified by the National Surgical Quality Improvement Program. The median direct variable cost for the encounter was US$14,314. Agreement between variables present in the electronic medical record and the National Surgical Quality Improvement Program was excellent. Stepwise linear regression models of costs, using only electronic medical record-extractable variables, were non-inferior to those created with manually abstracted individual comorbidities (R2 = 0.67 vs 0.30, Akaike information criterion 2,095 vs 2,216). Model performance statistics were minimally impacted by the addition of comorbidities to models containing electronic medical record summary metrics (R2 = 0.67 vs 0.70, Akaike information criterion 2,095 vs 2,088).ConclusionSummary electronic medical record perioperative risk metrics predict patient-level cost variation as effectively as individual comorbidities in the pancreaticoduodenectomy population. Automated electronic medical record data extraction can expand the patient population available for retrospective analysis without the associated increase in human and fiscal resources that manual data abstraction requires.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.