• Ann Biomed Eng · Jan 2006

    Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies.

    • Zeng Lertmanorat, Kenneth J Gustafson, and Dominique M Durand.
    • Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
    • Ann Biomed Eng. 2006 Jan 1; 34 (1): 152-60.

    AbstractOne of the most challenging problems in peripheral nerve stimulation is the ability to activate selectively small axons without large ones. Electrical stimulation of peripheral nerve activates large diameter fibers before small ones. Currently available techniques for selective activation of small axons without large ones require long-duration stimulation pulses (>500 micros) and large stimulation amplitude, which shorten battery life of the implanted stimulator and could lead to electrode corrosion. In the current study, the hypothesis that small axons can be recruited before large ones with narrow pulse width (50 micros) using an electrode array was tested in both simulations simulation and experiments in the cat lateral gastrocnemius (LG) model. The LG nerve innervates both LG and soleus muscle groups with axons within 10-13 and 8-12 microm diameter ranges, respectively. A finite element model of LG nerve was constructed and simulations showed that, when activating 40% of LG, a conventional tripolar electrode activated only 9% of soleus whereas the electrode arrays of 5, 7, and 11 contacts activated 39, 46, and 60% of soleus respectively, suggesting that the arrays could activate small axons before fully recruiting large axons. In animal experiments, peak twitch force of LG and soleus were plotted as a function of stimulation amplitude to indicate the recruitment curve. At 40% activation of LG, a conventional tripolar electrode activated only 7% of soleus whereas the electrode arrays of 5, 7, and 11 contacts activated 43, 48, and 72% of soleus respectively. The electrode arrays also decreased significantly the recruitment curve slopes to only 10-20% of the value obtained for the tripolar electrode in both computer simulations and experiments. In conclusion, the 5-, 7-, and 11-contact arrays can be used to reverse the recruitment order of peripheral nerve stimulation with a narrow pulse.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.