-
- Jihong Shi, Shan Shi, Bin Wu, Jian Zhang, Yan Li, Xue Wu, Julei Zhang, Kejia Wang, Bin Zhao, Weixia Cai, Xiaozhi Bai, Dahai Hu, and Hao Guan.
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
- Oncotarget. 2017 Nov 7; 8 (55): 93757-93770.
AbstractHypertrophic scar (HS) is a serious skin fibrotic disease characterized by excessive hypercellularity and extracellular matrix (ECM) component deposition. Autophagy is a tightly regulated physiological process essential for cellular maintenance, differentiation, development and homeostasis. However, during the formation of HS, whether and how autophagy is regulated in dermal fibroblasts are still far from elucidated. Here we detected the autophagic capacity in HS and normal skin (NS) counterparts, explored and verified the key regulatory molecules of autophagy in HS-derived fibroblasts (HSFs), and validated the data using rabbit ear scar model. Transmission electron microscopy (TEM) and immunostaining data showed that LC3-positive cells and autophagosomes in HS/HSFs were more intensive relative to those in NS/NSFs groups. Knockdown of LC3 (shLC3) could significantly block the expressionof type I collagen (Col 1, p < 0.01) and type III collagen (Col 3, p < 0.01) and thus inhibit the fibrosis of HSFs. shLC3 resistant to autophagy was shown to be Bcl-xL-, not Bcl-2-dependent, and silencing of Bcl-xL (sibcl-xL) significantly increased apoptosis of HSFs (p < 0.01). Immunofluorescence results showed that instead of inhibiting α-SMA protein expression, shLC3 could change its architecture arrangement in HSFs. sibcl-xL showed that Bcl-xL was a key signaling molecule involved in HSFs autophagy. More importantly, both shLC3 and sibcl-xL obviously improved the appearance and architecture of the rabbit ear scar, and reduced scar formation on the rabbit ear. Therefore, the aberration of LC3 protein processing compromised autophagy in HS might associate with its pathogenesis in wound repair. LC3 regulated HS fibrosis by controlling the expression of Bcl-xL in HSFs. Thus, Bcl-xL might serve as a potential molecular target, providing a novel strategy for HS therapy.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.