-
Bmc Musculoskel Dis · Aug 2015
Randomized Controlled TrialPrediction of pain outcomes in a randomized controlled trial of dose-response of spinal manipulation for the care of chronic low back pain.
- Darcy Vavrek, Mitchell Haas, Moni Blazej Neradilek, and Nayak Polissar.
- University of Western States, 2900 NE 132nd Ave, Portland, OR, 97230, USA. dvavrek@uws.edu.
- Bmc Musculoskel Dis. 2015 Aug 19; 16: 205.
BackgroundNo previous studies have created and validated prediction models for outcomes in patients receiving spinal manipulation for care of chronic low back pain (cLBP). We therefore conducted a secondary analysis alongside a dose-response, randomized controlled trial of spinal manipulation.MethodsWe investigated dose, pain and disability, sociodemographics, general health, psychosocial measures, and objective exam findings as potential predictors of pain outcomes utilizing 400 participants from a randomized controlled trial. Participants received 18 sessions of treatment over 6-weeks and were followed for a year. Spinal manipulation was performed by a chiropractor at 0, 6, 12, or 18 visits (dose), with a light-massage control at all remaining visits. Pain intensity was evaluated with the modified von Korff pain scale (0-100). Predictor variables evaluated came from several domains: condition-specific pain and disability, sociodemographics, general health status, psychosocial, and objective physical measures. Three-quarters of cases (training-set) were used to develop 4 longitudinal models with forward selection to predict individual "responders" (≥50% improvement from baseline) and future pain intensity using either pretreatment characteristics or post-treatment variables collected shortly after completion of care. The internal validity of the predictor models were then evaluated on the remaining 25% of cases (test-set) using area under the receiver operating curve (AUC), R(2), and root mean squared error (RMSE).ResultsThe pretreatment responder model performed no better than chance in identifying participants who became responders (AUC = 0.479). Similarly, the pretreatment pain intensity model predicted future pain intensity poorly with low proportion of variance explained (R(2) = .065). The post-treatment predictor models performed better with AUC = 0.665 for the responder model and R(2) = 0.261 for the future pain model. Post-treatment pain alone actually predicted future pain better than the full post-treatment predictor model (R(2) = 0.350). The prediction errors (RMSE) were large (19.4 and 17.5 for the pre- and post-treatment predictor models, respectively).ConclusionsInternal validation of prediction models showed that participant characteristics preceding the start of care were poor predictors of at least 50% improvement and the individual's future pain intensity. Pain collected shortly after completion of 6 weeks of study intervention predicted future pain the best.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.