-
Journal of neurosurgery · Dec 2021
Symptom-specific differential motor network modulation by deep brain stimulation in Parkinson's disease.
- William S Gibson, Aaron E Rusheen, Yoonbae Oh, Myung-Ho In, Krzysztof R Gorny, Joel P Felmlee, Bryan T Klassen, Sung Jun Jung, Hoon-Ki Min, Kendall H Lee, and Hang Joon Jo.
- Departments of1Neurologic Surgery.
- J. Neurosurg. 2021 Dec 1; 135 (6): 177117791771-1779.
ObjectiveDeep brain stimulation (DBS) of the subthalamic nucleus (STN) is an established neurosurgical treatment for the motor symptoms of Parkinson's disease (PD). While often highly effective, DBS does not always yield optimal therapeutic outcomes, and stimulation-induced adverse effects, including paresthesia, muscle contractions, and nausea/lightheadedness, commonly occur and can limit the efficacy of stimulation. Currently, objective metrics do not exist for monitoring neural changes associated with stimulation-induced therapeutic and adverse effects.MethodsIn the present study, the authors combined intraoperative functional MRI (fMRI) with STN DBS in 20 patients with PD to test the hypothesis that stimulation-induced blood oxygen level-dependent signals contained predictive information concerning the therapeutic and adverse effects of stimulation.ResultsAs expected, DBS resulted in blood oxygen level-dependent activation in myriad motor regions, including the primary motor cortex, caudate, putamen, thalamus, midbrain, and cerebellum. Across the patients, DBS-induced improvements in contralateral Unified Parkinson's Disease Rating Scale tremor subscores correlated with activation of thalamic, brainstem, and cerebellar regions. In addition, improvements in rigidity and bradykinesia subscores correlated with activation of the primary motor cortex. Finally, activation of specific sensorimotor-related subregions correlated with the presence of DBS-induced adverse effects, including paresthesia and nausea (cerebellar cortex, sensorimotor cortex) and unwanted muscle contractions (caudate and putamen).ConclusionsThese results suggest that DBS-induced activation patterns revealed by fMRI contain predictive information with respect to the therapeutic and adverse effects of DBS. The use of fMRI in combination with DBS therefore may hold translational potential to guide and improve clinical stimulator optimization in patients.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.