• Dev. Neurosci. · Jan 2012

    Inhibition of MMP-9 activity following hypoxic ischemia in the developing brain using a highly specific inhibitor.

    • Himani S Ranasinghe, Arjan Scheepens, Ernest Sirimanne, Murray D Mitchell, Christopher E Williams, and Mhoyra Fraser.
    • The Liggins Institute, University of Auckland, Auckland, New Zealand.
    • Dev. Neurosci. 2012 Jan 1; 34 (5): 417-27.

    AbstractPerinatal hypoxic ischemic (HI) brain injury is a leading cause of long-term neurological handicap in newborn babies. Recently, excessive activity of matrix metalloproteinases (MMPs), and in particular MMP-9, has been implicated in the aetiology of HI injuries to the immature brain. Our previous study suggested that MMP-9 may be involved in the development of the delayed injury processes following HI injury to the developing brain. Given this, we therefore propose that MMP-9 may be a useful target for rescue therapies in the injured developing brain. To address this, we chose to use SB-3CT, a highly selective inhibitor that is known to target only MMP-2 and MMP-9, to attenuate the elevated MMP-9 activity seen following HI injury to the developing brain. Twenty-one-day-old postnatal Wistar rats were subjected to unilateral carotid artery occlusion followed by exposure to hypoxia (8% oxygen for 1 h). SB-3CT (50 mg/kg body weight in 25% dimethyl sulphoxide/75% polyethylene glycol) or an equal volume of vehicle or saline diluent was then administered intraperitoneally at 2, 5 and 14 h following the insult. Gelatin zymography revealed that pro-MMP-9 levels were significantly reduced at 6 h following hypoxic ischaemia (p ≤ 0.05). However, our results showed that despite significantly inhibiting brain pro-MMP-9 activity after hypoxic ischaemia, SB-3CT failed to confer significant neuroprotection in postnatal day 21 rats 3 days after an HI insult. Further investigations are warranted using a recently reported selective water-soluble version of SB-3CT or another MMP-9 selective inhibitor to resolve the role of MMP-9 in the aetiology of HI injury in the developing brain.Copyright © 2012 S. Karger AG, Basel.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.