• Cochrane Db Syst Rev · May 2021

    Review Meta Analysis

    Reactive air surfaces for preventing pressure ulcers.

    • Chunhu Shi, Jo C Dumville, Nicky Cullum, Sarah Rhodes, Vannessa Leung, and Elizabeth McInnes.
    • Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
    • Cochrane Db Syst Rev. 2021 May 7; 5 (5): CD013622CD013622.

    BackgroundPressure ulcers (also known as pressure injuries, pressure sores, decubitus ulcers and bed sores) are localised injuries to the skin or underlying soft tissue, or both, caused by unrelieved pressure, shear or friction. Reactive air surfaces (beds, mattresses or overlays) can be used for preventing pressure ulcers.ObjectivesTo assess the effects of reactive air beds, mattresses or overlays compared with any support surface on the incidence of pressure ulcers in any population in any setting.Search MethodsIn November 2019, we searched the Cochrane Wounds Specialised Register; the Cochrane Central Register of Controlled Trials (CENTRAL); Ovid MEDLINE (including In-Process & Other Non-Indexed Citations); Ovid Embase and EBSCO CINAHL Plus. We also searched clinical trials registries for ongoing and unpublished studies, and scanned reference lists of relevant included studies as well as reviews, meta-analyses and health technology reports to identify additional studies. There were no restrictions with respect to language, date of publication or study setting.Selection CriteriaWe included randomised controlled trials that allocated participants of any age to reactive air beds, overlays or mattresses. Comparators were any beds, overlays or mattresses that were applied for preventing pressure ulcers.Data Collection And AnalysisAt least two review authors independently assessed studies using predetermined inclusion criteria. We carried out data extraction, 'Risk of bias' assessment using the Cochrane 'Risk of bias' tool, and the certainty of the evidence assessment according to Grading of Recommendations, Assessment, Development and Evaluations methodology. If a reactive air surface was compared with surfaces that were not clearly specified, then we recorded and described the concerned study but did not included it in further data analyses.Main ResultsWe included 17 studies (2604 participants) in this review. Most studies were small (median study sample size: 83 participants). The average participant age ranged from 56 to 87 years (median: 72 years). Participants were recruited from a wide range of care settings with the majority being acute care settings. Almost all studies were conducted in the regions of Europe and America. Of the 17 included studies, two (223 participants) compared reactive air surfaces with surfaces that were not well described and therefore could not be classified. We analysed data for five comparisons: reactive air surfaces compared with (1) alternating pressure (active) air surfaces (seven studies with 1728 participants), (2) foam surfaces (four studies with 229 participants), (3) reactive water surfaces (one study with 37 participants), (4) reactive gel surfaces (one study with 66 participants), and (5) another type of reactive air surface (two studies with 223 participants). Of the 17 studies, seven (41.2%) presented findings which were considered at high overall risk of bias.Primary OutcomePressure ulcer incidence Reactive air surfaces may reduce the proportion of participants developing a new pressure ulcer compared with foam surfaces (risk ratio (RR) 0.42; 95% confidence interval (CI) 0.18 to 0.96; I2 = 25%; 4 studies, 229 participants; low-certainty evidence). It is uncertain if there is a difference in the proportions of participants developing a new pressure ulcer on reactive air surfaces compared with: alternating pressure (active) air surfaces (6 studies, 1648 participants); reactive water surfaces (1 study, 37 participants); reactive gel surfaces (1 study, 66 participants), or another type of reactive air surface (2 studies, 223 participants). Evidence for all these comparisons is of very low certainty. Included studies have data on time to pressure ulcer incidence for two comparisons. When time to pressure ulcer incidence is considered using a hazard ratio (HR), low-certainty evidence suggests that in the nursing home setting, people on reactive air surfaces may be less likely to develop a new pressure ulcer over 14 days' of follow-up than people on alternating pressure (active) air surfaces (HR 0.44; 95% CI 0.21 to 0.96; 1 study, 308 participants). It is uncertain if there is a difference in the hazard of developing new pressure ulcers between two types of reactive air surfaces (1 study, 123 participants; very low-certainty evidence). Secondary outcomes Support-surface-associated patient comfort: the included studies have data on this outcome for three comparisons. We could not pool any data as comfort outcome measures differed between included studies; therefore a narrative summary is provided. It is uncertain if there is a difference in patient comfort responses between reactive air surfaces and foam surfaces over the top of an alternating pressure (active) air surfaces (1 study, 72 participants), and between those using reactive air surfaces and those using alternating pressure (active) air surfaces (4 studies, 1364 participants). Evidence for these two comparisons is of very low certainty. It is also uncertain if there is a difference in patient comfort responses between two types of reactive air surfaces (1 study, 84 participants; low-certainty evidence). All reported adverse events: there were data on this outcome for one comparison: it is uncertain if there is a difference in adverse events between reactive air surfaces and foam surfaces (1 study, 72 participants; very low-certainty evidence). The included studies have no data for health-related quality of life and cost-effectiveness for all five comparisons.Authors' ConclusionsCurrent evidence is uncertain regarding any differences in the relative effects of reactive air surfaces on ulcer incidence and patient comfort, when compared with reactive water surfaces, reactive gel surfaces, or another type of reactive air surface. Using reactive air surfaces may reduce the risk of developing new pressure ulcers compared with using foam surfaces. Also, using reactive air surfaces may reduce the risk of developing new pressure ulcers within 14 days compared with alternating pressure (active) air surfaces in people in a nursing home setting. Future research in this area should consider evaluation of the most important support surfaces from the perspective of decision-makers. Time-to-event outcomes, careful assessment of adverse events and trial-level cost-effectiveness evaluation should be considered in future studies. Trials should be designed to minimise the risk of detection bias; for example, by using digital photography and adjudicators of the photographs being blinded to group allocation. Further review using network meta-analysis will add to the findings reported here.Copyright © 2021 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.