-
Cochrane Db Syst Rev · Mar 2016
Review Meta AnalysisVascular closure devices for femoral arterial puncture site haemostasis.
- Lindsay Robertson, Alina Andras, Frances Colgan, and Ralph Jackson.
- Department of Vascular Surgery, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, High Heaton, Newcastle upon Tyne, UK, NE7 7DN.
- Cochrane Db Syst Rev. 2016 Mar 7; 3 (3): CD009541CD009541.
BackgroundVascular closure devices (VCDs) are widely used to achieve haemostasis after procedures requiring percutaneous common femoral artery (CFA) puncture. There is no consensus regarding the benefits of VCDs, including potential reduction in procedure time, length of hospital stay or time to patient ambulation. No robust evidence exists that VCDs reduce the incidence of puncture site complications compared with haemostasis achieved through extrinsic (manual or mechanical) compression.ObjectivesTo determine the efficacy and safety of VCDs versus traditional methods of extrinsic compression in achieving haemostasis after retrograde and antegrade percutaneous arterial puncture of the CFA.Search MethodsThe Cochrane Vascular Trials Search Co-ordinator searched the Specialised Register (April 2015) and the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 3). Clinical trials databases were searched for details of ongoing or unpublished studies. References of articles retrieved by electronic searches were searched for additional citations.Selection CriteriaWe included randomised and quasi-randomised controlled trials in which people undergoing a diagnostic or interventional procedure via percutaneous CFA puncture were randomised to one type of VCD versus extrinsic compression or another type of VCD.Data Collection And AnalysisTwo authors independently extracted data and assessed the methodological quality of trials. We resolved disagreements by discussion with the third author. We performed meta-analyses when heterogeneity (I(2)) was < 90%. The primary efficacy outcomes were time to haemostasis and time to mobilisation (mean difference (MD) and 95% confidence interval (CI)). The primary safety outcome was a major adverse event (mortality and vascular injury requiring repair) (odds ratio (OR) and 95% CI). Secondary outcomes included adverse events.Main ResultsWe included 52 studies (19,192 participants) in the review. We found studies comparing VCDs with extrinsic compression (sheath size ≤ 9 Fr), different VCDs with each other after endovascular (EVAR) and percutaneous EVAR procedures and VCDs with surgical closure after open exposure of the artery (sheath size ≥ 10 Fr). For primary outcomes, we assigned the quality of evidence according to GRADE (Grades of Recommendation, Assessment, Development and Evaluation) criteria as low because of serious imprecision and for secondary outcomes as moderate for precision, consistency and directness.For time to haemostasis, studies comparing collagen-based VCDs and extrinsic compression were too heterogenous to be combined. However, both metal clip-based (MD -14.81 minutes, 95% CI -16.98 to -12.63 minutes; five studies; 1665 participants) and suture-based VCDs (MD -14.58 minutes, 95% CI -16.85 to -12.32 minutes; seven studies; 1664 participants) were associated with reduced time to haemostasis when compared with extrinsic compression.For time to mobilisation, studies comparing collagen-, metal clip- and suture-based devices with extrinsic compression were too heterogeneous to be combined. No deaths were reported in the studies comparing collagen-based, metal clip-based or suture-based VCDs with extrinsic compression. For vascular injury requiring repair, meta-analyses demonstrated that neither collagen (OR 2.81, 95% CI 0.47 to 16.79; six studies; 5731 participants) nor metal clip-based VCDs (OR 0.49, 95% CI 0.03 to 7.95; three studies; 783 participants) were more effective than extrinsic compression. No cases of vascular injury required repair in the study testing suture-based VCD with extrinsic compression.Investigators reported no differences in the incidence of infection between collagen-based (OR 2.14, 95% CI 0.88 to 5.22; nine studies; 7616 participants) or suture-based VCDs (OR 1.66, 95% CI 0.22 to 12.71; three studies; 750 participants) and extrinsic compression. No cases of infection were observed in studies testing suture-based VCD versus extrinsic compression. The incidence of groin haematoma was lower with collagen-based VCDs than with extrinsic compression (OR 0.46, 95% CI 0.40 to 0.54; 25 studies; 10,247 participants), but no difference was evident when metal clip-based (OR 0.79, 95% CI 0.46 to 1.34; four studies; 1523 participants) or suture-based VCDs (OR 0.65, 95% CI 0.41 to 1.02; six studies; 1350 participants) were compared with extrinsic compression. The incidence of pseudoaneurysm was lower with collagen-based devices than with extrinsic compression (OR 0.74, 95% CI 0.55 to 0.99; 21 studies; 9342 participants), but no difference was noted when metal clip-based (OR 0.76, 95% CI 0.20 to 2.89; six studies; 1966 participants) or suture-based VCDs (OR 0.79, 95% CI 0.25 to 2.53; six studies; 1527 participants) were compared with extrinsic compression. For other adverse events, researchers reported no differences between collagen-based, clip-based or suture-based VCDs and extrinsic compression.Limited data were obtained when VCDs were compared with each other. Results of one study showed that metal clip-based VCDs were associated with shorter time to haemostasis (MD -2.24 minutes, 95% CI -2.54 to -1.94 minutes; 469 participants) and shorter time to mobilisation (MD -0.30 hours, 95% CI -0.59 to -0.01 hours; 469 participants) than suture-based devices. Few studies measured (major) adverse events, and those that did found no cases or no differences between VCDs.Percutaneous EVAR procedures revealed no differences in time to haemostasis (MD -3.20 minutes, 95% CI -10.23 to 3.83 minutes; one study; 101 participants), time to mobilisation (MD 1.00 hours, 95% CI -2.20 to 4.20 hours; one study; 101 participants) or major adverse events between PerClose and ProGlide. When compared with sutures after open exposure, VCD was associated with shorter time to haemostasis (MD -11.58 minutes, 95% CI -18.85 to -4.31 minutes; one study; 151 participants) but no difference in time to mobilisation (MD -2.50 hours, 95% CI -7.21 to 2.21 hours; one study; 151 participants) or incidence of major adverse events. For time to haemostasis, studies comparing collagen-based VCDs and extrinsic compression were too heterogeneous to be combined. However, both metal clip-based and suture-based VCDs were associated with reduced time to haemostasis when compared with extrinsic compression. For time to mobilisation, studies comparing VCDs with extrinsic compression were too heterogeneous to be combined. No difference was demonstrated in the incidence of vascular injury or mortality when VCDs were compared with extrinsic compression. No difference was demonstrated in the efficacy or safety of VCDs with different mechanisms of action. Further work is necessary to evaluate the efficacy of devices currently in use and to compare these with one other and extrinsic compression with respect to clearly defined outcome measures.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.