-
IEEE Trans Biomed Eng · Jan 2015
A joint QRS detection and data compression scheme for wearable sensors.
- C J Deepu and Y Lian.
- IEEE Trans Biomed Eng. 2015 Jan 1; 62 (1): 165-75.
AbstractThis paper presents a novel electrocardiogram (ECG) processing technique for joint data compression and QRS detection in a wireless wearable sensor. The proposed algorithm is aimed at lowering the average complexity per task by sharing the computational load among multiple essential signal-processing tasks needed for wearable devices. The compression algorithm, which is based on an adaptive linear data prediction scheme, achieves a lossless bit compression ratio of 2.286x. The QRS detection algorithm achieves a sensitivity (Se) of 99.64% and positive prediction (+P) of 99.81% when tested with the MIT/BIH Arrhythmia database. Lower overall complexity and good performance renders the proposed technique suitable for wearable/ambulatory ECG devices.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.