• J. Cardiothorac. Vasc. Anesth. · Dec 1995

    Comparative Study

    Effects of inhaled prostacyclin as compared with inhaled nitric oxide in a canine model of pulmonary microembolism and oleic acid edema.

    • B Zwissler, M Welte, O Habler, M Kleen, and K Messmer.
    • Department of Anesthesia, Ludwig-Maximilians-University Munich, Germany.
    • J. Cardiothorac. Vasc. Anesth. 1995 Dec 1; 9 (6): 634-40.

    ObjectiveRecently, it has been shown that the inhalation of nitric oxide (NO) and of prostacyclin (PGI2) elicits selective pulmonary vasodilation in a canine model of pulmonary hypertension induced by hypoxic pulmonary vasoconstriction. The present study was designed to investigate whether inhaled NO or PGI2-aerosol, respectively, is also effective in decreasing pulmonary artery pressure in a canine model of acute pulmonary microembolism and oleic acid edema.DesignProspective, randomized, cross-over design.SettingUniversity animal research laboratory.ParticipantsEight anesthetized, mechanically ventilated dogs (28 +/- 1 kg).InterventionsAcute pulmonary microembolization (PME) was induced using glass microbeads (mean diameter: 100 microns) and 0.01 mL/kg of oleic acid. Subsequently, inhaled PGI2 (concentration: 10 micrograms/mL) or NO (50 ppm), respectively, was randomly administered for 15 minutes each and then withdrawn.Measurements And Main ResultsCentral hemodynamics (heart rate [HR], cardiac output [CO], stroke volume [SV], mean arterial pressure [MAP], systemic vascular resistance [SVR], mean pulmonary artery pressure [PAP], pulmonary vascular resistance [PVR]) and gas exchange (PaO2/FIO2 ratio, intrapulmonary shunt [Qs/Qt], alveolar-arterial oxygen difference, [AaDO2]) were assessed. Measurements were performed at control, after PME, and during administration of PGI2 and NO, respectively. PME induced a significant increase (p < 0.001) of MAP (+9%), PAP (+68%), and PVR (+163%), whereas HR, CO, and SV remained unchanged and lung function deteriorated. Inhalation of NO slightly decreased PAP (-10%; p < 0.05) and PVR (-26%; p < 0.01) and improved AaDO2 and PaO2/FIO2. In contrast, inhalation of PGI2 had no consistent effect on pulmonary vascular tone or gas exchange.ConclusionThe data demonstrate that inhaled NO may elicit selective pulmonary vasodilation and improve gas exchange in a canine model of pulmonary microembolism and respiratory insufficiency. However, the degree of these effects was relatively small. The aerosolization of PGI2 under conditions of positive-pressure ventilation did not exert a significant vasodilatory effect on pulmonary vessels and did not improve pulmonary gas exchange in this model.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.