• Circulation research · May 2003

    Protective role of angiopoietin-1 in experimental pulmonary hypertension.

    • Yidan D Zhao, Andrew I M Campbell, Malcolm Robb, Douglas Ng, and Duncan J Stewart.
    • Terrence Donnelly Research Laboratories, Division of Cardiology, St Michael's Hospital and University of Toronto, Ontario, Canada.
    • Circ. Res. 2003 May 16; 92 (9): 984-91.

    AbstractAngiopoietin-1 (Ang-1), a newly discovered ligand of the endothelial-specific tyrosine kinase receptor Tie-2, has been found to promote cell survival, vascular maturation, and stabilization. We hypothesized that Ang-1 gene transfer to the pulmonary microcirculation would improve pulmonary hemodynamics and vascular remodeling in experimental pulmonary hypertension. Rat pulmonary artery smooth muscle cells were transfected with Ang-1 cDNA or null (pFLAG-CMV-1) vector. Syngeneic Fisher 344 rats were treated with monocrotaline (MCT) (75 mg/kg IP) with or without delivery of 5x10(5) Ang-1-transfected cells into the right jugular vein. After 28 days, plasmid-derived Ang-1 mRNA was consistently and robustly detected by reverse transcriptase-polymerase chain reaction in lungs from all animals receiving Ang-1 gene therapy. Tie-2 receptor expression was markedly downregulated in rats treated with MCT, and this was partially restored by gene therapy with Ang-1. Animals receiving MCT exhibited 77% mortality by 28 days. In contrast, in pAng-1-treated animals, the 28-day mortality was only 14% (P<0.0001). In addition, right ventricular systolic pressure was reduced from 52+/-1.3 mm Hg in the MCT-treated group to 38+/-1.3 mm Hg by Ang-1 gene transfer (P<0.01), whereas the measurement of right to left ventricular plus septal weight ratio was also reduced from 0.41+/-0.03 to 0.31+/-0.01 (P<0.05). Moreover, MCT resulted in increased apoptosis, mainly in the microvasculature, and reduced endothelial NO synthase mRNA expression, both of which were prevented by Ang-1 gene transfer. Thus, cell-based gene transfer with Ang-1 improved survival and pulmonary hemodynamics in experimental pulmonary hypertension by a mechanism involving the inhibition of apoptosis and protection of the pulmonary microvasculature.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…