-
Journal of neurotrauma · Oct 2001
Endothelin-Induced cyclooxygenase-dependent superoxide generation contributes to K+ channel functional impairment after brain injury.
- W M Armstead.
- Department of Anesthesia, University of Pennsylvania, Philadelphia 19104, USA. armsteaw@mail.med.upenn.edu
- J. Neurotrauma. 2001 Oct 1; 18 (10): 1039-48.
AbstractThis study determined if endothelin (ET-1) generates superoxide anion (O2-) in a cyclooxygenase-dependent manner and if such production contributes to impairment of dilation to activators of ATP-sensitive K+ (KATP) and calcium-sensitive K+ (Kca) channels following fluid percussion brain injury (FPI) in newborn pigs equipped with closed cranial windows. Superoxide dismutase (SOD)-inhibitable nitroblue tetrazolium (NBT) reduction was determined as an index of O2- generation. Under non-brain injury conditions, topical ET-1 (10(-10) M, the concentration present in CSF following FPI) increased SOD-inhibitable NBT reduction from 1 +/- 1 to 17 +/- 3 pmol/mm2. Indomethacin, a cyclooxygenase inhibitor, blunted such NBT reduction (1 +/- 1 to 4 +/- 1 pmol/mm2), while the ET-1 antagonist BQ123 blocked NBT reduction. BQ123 and indomethacin also blunted the NBT reduction observed after FPI. Under non-brain injury conditions, ET-1 (10(-10) M) coadministered with the KATP and Kca channel agonists cromakalim and NS1619 (10-8, 10(-6) M) diminished dilation to these K+ channel agonists, while indomethacin partially prevented such impairment (13 +/- 1 and 23 +/- 1 vs. 2 +/- 1 and 6 +/- 1 vs. 6 +/- 1 and 14 +/- 2% for cromakalim in untreated, ET-1, and ET-1 plus indomethacin-treated piglets, respectively). Cromakalim- and NS1619-induced pial artery dilation was attenuated following FPI, while indomethacin or BQ123 preadministration partially prevented such impairment (13 +/- 1 and 23 +/- 1, sham control; 1 +/- 1 and 4 +/- 1, FPI; 8 +/- 1 and 16 +/- 3%, FPI and indomethacin-pretreated for responses to cromakalim 10(-8), 10-6 M, respectively). These data show that ET-1 increased O2- production in a cyclooxygenase-dependent manner and contributed to this production after FPI. These data also show that ET-1 blunted KATP and Kca channel-mediated cerebrovasodilation in a cyclooxygenase dependent manner. These data suggest that ET-1-induced cyclooxygenase-dependent O2- generation contributes to KATP and Kca channel function impairment after FPI.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.