• JMIR Public Health Surveill · Oct 2020

    Geographic Differences in Cannabis Conversations on Twitter: Infodemiology Study.

    • Jenna van Draanen, HaoDong Tao, Saksham Gupta, and Sam Liu.
    • Department of Sociology, University of British Columbia, Vancouver, BC, Canada.
    • JMIR Public Health Surveill. 2020 Oct 5; 6 (4): e18540.

    BackgroundInfodemiology is an emerging field of research that utilizes user-generated health-related content, such as that found in social media, to help improve public health. Twitter has become an important venue for studying emerging patterns in health issues such as substance use because it can reflect trends in real-time and display messages generated directly by users, giving a uniquely personal voice to analyses. Over the past year, several states in the United States have passed legislation to legalize adult recreational use of cannabis and the federal government in Canada has done the same. There are few studies that examine the sentiment and content of tweets about cannabis since the recent legislative changes regarding cannabis have occurred in North America.ObjectiveTo examine differences in the sentiment and content of cannabis-related tweets by state cannabis laws, and to examine differences in sentiment between the United States and Canada between 2017 and 2019.MethodsIn total, 1,200,127 cannabis-related tweets were collected from January 1, 2017, to June 17, 2019, using the Twitter application programming interface. Tweets then were grouped geographically based on cannabis legal status (legal for adult recreational use, legal for medical use, and no legal use) in the locations from which the tweets came. Sentiment scoring for the tweets was done with VADER (Valence Aware Dictionary and sEntiment Reasoner), and differences in sentiment for states with different cannabis laws were tested using Tukey adjusted two-sided pairwise comparisons. Topic analysis to determine the content of tweets was done using latent Dirichlet allocation in Python, using a Java implementation, LdaMallet, with Gensim wrapper.ResultsSignificant differences were seen in tweet sentiment between US states with different cannabis laws (P=.001 for negative sentiment tweets in fully illegal compared to legal for adult recreational use states), as well as between the United States and Canada (P=.003 for positive sentiment and P=.001 for negative sentiment). In both cases, restrictive state policy environments (eg, those where cannabis use is fully illegal, or legal for medical use only) were associated with more negative tweet sentiment than less restrictive policy environments (eg, where cannabis is legal for adult recreational use). Six key topics were found in recent US tweet contents: fun and recreation (keywords, eg, love, life, high); daily life (today, start, live); transactions (buy, sell, money); places of use (room, car, house); medical use and cannabis industry (business, industry, company); and legalization (legalize, police, tax). The keywords representing content of tweets also differed between the United States and Canada.ConclusionsKnowledge about how cannabis is being discussed online, and geographic differences that exist in these conversations may help to inform public health planning and prevention efforts. Public health education about how to use cannabis in ways that promote safety and minimize harms may be especially important in places where cannabis is legal for adult recreational and medical use.©Jenna van Draanen, HaoDong Tao, Saksham Gupta, Sam Liu. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 05.10.2020.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.