• Critical care medicine · Mar 1998

    Multicenter Study

    Multicenter study of oxygen-insensitive handheld glucose point-of-care testing in critical care/hospital/ambulatory patients in the United States and Canada.

    • G J Kost, H T Vu, J H Lee, P Bourgeois, F L Kiechle, C Martin, S S Miller, A O Okorodudu, J J Podczasy, R Webster, and K J Whitlow.
    • University of California, Davis 95616, USA.
    • Crit. Care Med. 1998 Mar 1; 26 (3): 581-90.

    ObjectivesExisting handheld glucose meters are glucose oxidase (GO)-based. Oxygen side reactions can introduce oxygen dependency, increase potential error, and limit clinical use. Our primary objectives were to: a) introduce a new glucose dehydrogenase (GD)-based electrochemical biosensor for point-of-care testing; b) determine the oxygen-sensitivity of GO- and GD-based electrochemical biosensor test strips; and c) evaluate the clinical performance of the new GD-based glucose meter system in critical care/hospital/ambulatory patients.DesignMulticenter study sites compared glucose levels determined with GD-based biosensors to glucose levels determined in whole blood with a perchloric acid deproteinization hexokinase reference method. One site also studied GO-based biosensors and venous plasma glucose measured with a chemistry analyzer. Biosensor test strips were used with a handheld glucose monitoring system. Bench and clinical oxygen sensitivity, hematocrit effect, and precision were evaluated.SettingThe study was performed at eight U.S. medical centers and one Canadian medical center.PatientsThere were 1,248 patients.ResultsThe GO-based biosensor was oxygen-sensitive. The new GD-based biosensor was oxygen-insensitive. GD-based biosensor performance was acceptable: 2,104 (96.1%) of 2,189 glucose meter measurements were within +/-15 mg/dL (+/-0.83 mmol/L) for glucose levels of < or = 100 mg/dL (< or = 5.55 mmol/L) or within +/-15% for glucose levels of > 100 mg/dL, compared with the whole-blood reference method results. With the GD-based biosensor, the percentages of glucose measurements that were not within the error tolerance were comparable for different specimen types and clinical groups. Bracket predictive values were acceptable for glucose levels used in therapeutic management.ConclusionsThe performance of GD-based, oxygen-insensitive, handheld glucose testing was technically suitable for arterial specimens in critical care patients, cord blood and heelstick specimens in neonates, and capillary and venous specimens in other patients. Multicenter findings benchmark the performance of bedside glucose testing devices. With the new +/-15 mg/dL --> 100 mg/dL --> +/-15% accuracy criterion, point-of-care systems for handheld glucose testing should score 95% (or better), as compared with the recommended reference method. Physiologic changes, preanalytical factors, confounding variables, and treatment goals must be taken into consideration when interpreting glucose results, especially in critically ill patients, for whom arterial blood glucose measurements will reflect systemic glucose levels.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.