• Medicine · May 2021

    Dual-scale categorization based deep learning to evaluate programmed cell death ligand 1 expression in non-small cell lung cancer.

    • Xiangyun Wang, Peilin Chen, Guangtai Ding, Yishi Xing, Rongrong Tang, Chaolong Peng, Yizhou Ye, and Qiang Fu.
    • Department of Respiratory and Critical Care Medicine Changzheng Hospital, Naval Military Medical University.
    • Medicine (Baltimore). 2021 May 21; 100 (20): e25994e25994.

    AbstractIn precision oncology, immune check point blockade therapy has quickly emerged as novel strategy by its efficacy, where programmed death ligand 1 (PD-L1) expression is used as a clinically validated predictive biomarker of response for the therapy. Automating pathological image analysis and accelerating pathology evaluation is becoming an unmet need. Artificial Intelligence and deep learning tools in digital pathology have been studied in order to evaluate PD-L1 expression in PD-L1 immunohistochemistry image. We proposed a Dual-scale Categorization (DSC)-based deep learning method that employed 2 VGG16 neural networks, 1 network for 1 scale, to critically evaluate PD-L1 expression. The DSC-based deep learning method was tested in a cohort of 110 patients diagnosed as non-small cell lung cancer. This method showed a concordance of 88% with pathologist, which was higher than concordance of 83% of 1-scale categorization-based method. Our results show that the DSCbased method can empower the deep learning application in digital pathology and facilitate computer-aided diagnosis.Copyright © 2021 the Author(s). Published by Wolters Kluwer Health, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.