-
J. Neurosci. Methods · Jul 2019
Development of a traumatic cervical dislocation spinal cord injury model with residual compression in the rat.
- Stephen Mattucci, Jason Speidel, Jie Liu, Matt S Ramer, Brian K Kwon, Wolfram Tetzlaff, and Thomas R Oxland.
- Orthopaedic and Injury Biomechanics Group, Departments of Orthopaedics and Mechanical Engineering, International Collaboration on Repair Discoveries, University of British Columbia, 818 West 10th Avenue, Vancouver, BC, V5Z 1M9, Canada. Electronic address: mattucci.stephen@gmail.com.
- J. Neurosci. Methods. 2019 Jul 1; 322: 58-70.
BackgroundPreclinical spinal cord injury models do not represent the wide range of biomechanical factors seen in human injuries, such as spinal level, injury mechanism, velocity of spinal cord impact, and residual compression. These factors may be responsible for differences observed between experimental and clinical study results, especially related to the controversial issue of timing of surgical decompression.New MethodSomatosensory Evoked Potentials were used to: a) characterize residual compression depths in a dislocation model, and b) evaluate the physiological effect of whether or not the spinal cord was decompressed following the initial injury, prior to the application of residual compression. Modifications to vertebral clamps and the development of a novel surgical frame allowed us to conduct surgical and injury procedures in a controlled manner without the risk of additional damage to the spinal cord. Behavioural outcomes were evaluated following varying dislocation displacements, in addition to the survivability of 4 h of residual compression following a traumatic injury.ResultsResidual compression immediately following the initial dislocation demonstrated significantly different electrophysiological response compared to when the residual compression was delayed.Comparison With Existing MethodThere are currently no other residual compression models that utilize a dislocation injury mechanism. Many residual compression studies have demonstrated the effectiveness of early decompression, however the compression of the spinal cord is often not representative of clinical traumatic injuries. Preclinical studies typically model residual compression using a sustained force through quasi-static application, when human injuries often occur at high velocities, followed by a sustained displacement occlusion of the spinal canal.ConclusionsThis study has validated several novel procedural approaches and injury parameters, and provided critical details to implement in the development of a traumatic cervical dislocation SCI model with residual compression.Copyright © 2019 Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.