-
- Michela Chiappalone, Paolo Massobrio, and Sergio Martinoia.
- Department of Neuroscience and Brain Technology, Italian Institute of Technology, Via Morego 30, Genova, Italy. michela.chiappalone@unige.it
- Eur. J. Neurosci. 2008 Jul 1; 28 (1): 221-37.
AbstractTo investigate distributed synaptic plasticity at the cell assembly level, we used dissociated cortical networks from embryonic rats grown on grids of 60 extracellular substrate-embedded electrodes (micro-electrode arrays). We developed a set of experimental plasticity protocols based on the pairing of tetanic bursts (20 Hz) with low-frequency stimuli (< or = 1 Hz), delivered through two separate channels of the array (i.e. associative tetanic stimulation). We tested our protocols on a large data set of 26 stable cultures, selected on the basis of both their initial level of spontaneous firing and the capability of low-frequency test stimuli to evoke spikes. Our main results are summarized as follows: (i) low-frequency stimuli produce neither short- nor long-term changes in the evoked response of the network; (ii) associative tetanic stimulation is able to induce plasticity in terms of a significant increase or decrease of the evoked activity in the whole network; (iii) the amount of change (i.e. increase or decrease of the evoked firing) strongly depends on the specific features of the applied protocols; and (iv) the potentiation induced by a specific associative protocol can last several hours. The results obtained demonstrate that large in vitro cortical assemblies display long-term network potentiation, a mechanism considered to be involved in the memory formation at cellular level. This pilot study could represent a relevant step towards understanding plastic properties at the neuronal population level.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.