• Neural Netw · Sep 2005

    Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing.

    • Abdulhamit Subasi, Ahmet Alkan, Etem Koklukaya, and M Kemal Kiymik.
    • Department of Electrical and Electronics Engineering, Kahramanmaras Sutcu Imam University, Karacasu Kampusu, 46601 Kahramanmaraş, Turkey. asubasi@ksu.edu.tr
    • Neural Netw. 2005 Sep 1; 18 (7): 985-97.

    AbstractSince EEG is one of the most important sources of information in therapy of epilepsy, several researchers tried to address the issue of decision support for such a data. In this paper, we introduce two fundamentally different approaches for designing classification models (classifiers); the traditional statistical method based on logistic regression and the emerging computationally powerful techniques based on artificial neural networks (ANNs). Logistic regression as well as feedforward error backpropagation artificial neural networks (FEBANN) and wavelet neural networks (WNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. In these methods we used FFT and autoregressive (AR) model by using maximum likelihood estimation (MLE) of EEG signals as an input to classification system with two discrete outputs: epileptic seizure or nonepileptic seizure. By identifying features in the signal we want to provide an automatic system that will support a physician in the diagnosing process. By applying AR with MLE in connection with WNN, we obtained novel and reliable classifier architecture. The network is constructed by the error backpropagation neural network using Morlet mother wavelet basic function as node activation function. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The WNN-based classifier outperformed the FEBANN and logistic regression based counterpart. Within the same group, the WNN-based classifier was more accurate than the FEBANN-based classifier, and the logistic regression-based classifier.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…