• Behav. Brain Res. · Sep 2020

    Investigation of local white matter abnormality in Parkinson's disease by using an automatic fiber tract parcellation.

    • Jingqiang Wang, Fan Zhang, Changchen Zhao, Qingrun Zeng, Jianzhong He, Lauren J O'Donnell, and Yuanjing Feng.
    • College of Information Engineering, Zhejiang University of Technology, Hangzhou, China.
    • Behav. Brain Res. 2020 Sep 15; 394: 112805.

    AbstractThe deficits of white matter (WM) microstructure are involved during Parkinson's disease (PD) progression. Most current methods identify key WM tracts relying on cortical regions of interest (ROIs). However, such ROI methods can be challenged due to low diffusion anisotropy near the gray matter (GM), which could result in a low sensitivity of tract identification. This work proposes an automatic WM parcellation method to improve the accuracy of WM tract identification and locate abnormal tracts by using sensitive features. The proposed method consists of 1) whole brain WM parcellation using an established fiber clustering method, without using any ROIs, 2) features of fasciculus were calculated to quantify diffusion measures at each equal cross-section along the whole cluster. Then, we use the proposed features to investigate the WM difference in PD compared with healthy controls (HC). We also use these features to investigate the relationship of clinical symptoms and specific fiber tracts. The novelty of the proposed method is that it automatically identifies the abnormal WM fibers in cluster degree. Experiment results indicated that the proposed method had advantage in detecting the local WM abnormality by performing between-group statistical analysis in 30 patients with PD and 28 HC. We found 13 hemisphere clusters and 8 commissural clusters had significant group difference (p < 0.05, corrected by FDR method) in local regions, which belonged to multiple fiber tracts including cingulum bundle (CB), inferior occipito-frontal fasciculus (IoFF), corpus callosum (CC), external capsule (EC), uncinate fasciculus (UF), superior longitudinal fasciculus (SLF) and thalamo front (TF). We also found clusters that had relevance with clinical indices of cognitive function (2 clusters), athletic function (6 clusters), and depressive state (2 clusters) in these significant clusters. From the experiment results, it confirmed the ability of the proposed method to identify potential WM microstructure abnormality.Copyright © 2020. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.