• Arthritis Rheumatol · May 2015

    The somatosensory link in fibromyalgia: functional connectivity of the primary somatosensory cortex is altered by sustained pain and is associated with clinical/autonomic dysfunction.

    • Jieun Kim, Marco L Loggia, Christine M Cahalan, Richard E Harris, Florian Beissner, Ronald G Garcia, Hyungjun Kim, Ajay D Wasan, Robert R Edwards, and Vitaly Napadow.
    • MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA.
    • Arthritis Rheumatol. 2015 May 1; 67 (5): 1395-1405.

    ObjectiveFibromyalgia (FM) is a chronic functional pain syndrome characterized by widespread pain, significant pain catastrophizing, sympathovagal dysfunction, and amplified temporal summation for evoked pain. While several studies have demonstrated altered resting brain connectivity in FM, studies have not specifically probed the somatosensory system and its role in both somatic and nonsomatic FM symptoms. Our objective was to evaluate resting primary somatosensory cortex (S1) connectivity and to explore how sustained, evoked deep tissue pain modulates this connectivity.MethodsWe acquired functional magnetic resonance imaging and electrocardiography data on FM patients and healthy controls during rest (the rest phase) and during sustained mechanical pressure-induced pain over the lower leg (the pain phase). Functional connectivity associated with different S1 subregions was calculated, while S1(leg) connectivity (representation of the leg in the primary somatosensory cortex) was contrasted between the rest phase and the pain phase and was correlated with clinically relevant measures in FM.ResultsDuring the rest phase, FM patients showed decreased connectivity between multiple ipsilateral and cross-hemispheric S1 subregions, which was correlated with clinical pain severity. Compared to the rest phase, the pain phase produced increased S1(leg) connectivity to the bilateral anterior insula in FM patients, but not in healthy controls. Moreover, in FM patients, sustained pain-altered S1(leg) connectivity to the anterior insula was correlated with clinical/behavioral pain measures and autonomic responses.ConclusionOur study demonstrates that both somatic and nonsomatic dysfunction in FM, including clinical pain, pain catastrophizing, autonomic dysfunction, and amplified temporal summation, are closely linked with the degree to which evoked deep tissue pain alters S1 connectivity to salience/affective pain-processing regions. Additionally, diminished connectivity between S1 subregions during the rest phase in FM may result from ongoing widespread clinical pain.© 2015 American College of Rheumatology.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.