• Journal of biomechanics · May 2017

    A computational study of invariant I5 in a nearly incompressible transversely isotropic model for white matter.

    • Yuan Feng, Suhao Qiu, Xiaolong Xia, Songbai Ji, and Chung-Hao Lee.
    • Center for Molecular Imaging and Nuclear Medicine, School of Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, China; School of Mechanical and Electronic Engineering, Soochow University, Suzhou, Jiangsu 215021, China. Electronic address: fengyuan@suda.edu.cn.
    • J Biomech. 2017 May 24; 57: 146-151.

    AbstractThe aligned axonal fiber bundles in white matter make it suitable to be modeled as a transversely isotropic material. Recent experimental studies have shown that a minimal form, nearly incompressible transversely isotropic (MITI) material model, is capable of describing mechanical anisotropy of white matter. Here, we used a finite element (FE) computational approach to demonstrate the significance of the fifth invariant (I5) when modeling the anisotropic behavior of white matter in the large-strain regime. We first implemented and validated the MITI model in an FE simulation framework for large deformations. Next, we applied the model to a plate-hole structural problem to highlight the significance of the invariant I5 by comparing with the standard fiber reinforcement (SFR) model. We also compared the two models by fitting the experiment data of asymmetric indentation, shear test, and uniaxial stretch of white matter. Our results demonstrated the significance of I5 in describing shear deformation/anisotropy, and illustrated the potential of the MITI model to characterize transversely isotropic white matter tissues in the large-strain regime.Copyright © 2017 Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.