• Neurosurg Focus · Jun 2016

    Subclinical respiratory dysfunction in chronic cervical cord compression: a pulmonary function test correlation.

    • Indira Devi Bhagavatula, Dhananjaya I Bhat, Gopalakrishnan M Sasidharan, Rakesh Kumar Mishra, Praful Suresh Maste, George C Vilanilam, and Talakkad N Sathyaprabha.
    • Departments of 1 Neurosurgery and.
    • Neurosurg Focus. 2016 Jun 1; 40 (6): E3.

    AbstractOBJECTIVE Respiratory abnormalities are well documented in acute spinal cord injury; however, the literature available for respiratory dysfunction in chronic compressive myelopathy (CCM) is limited. Respiratory dysfunction in CCM is often subtle and subclinical. The authors studied the pattern of respiratory dysfunction in patients with chronic cord compression by using spirometry, and the clinical and surgical implications of this dysfunction. In this study they also attempted to address the postoperative respiratory function in these patients. METHODS A prospective study was done in 30 patients in whom cervical CCM due to either cervical spondylosis or ossification of the posterior longitudinal ligament (OPLL) was diagnosed. Thirty age-matched healthy volunteers were recruited as controls. None of the patients included in the study had any symptoms or signs of respiratory dysfunction. After clinical and radiological diagnosis, all patients underwent pulmonary function tests (PFTs) performed using a standardized Spirometry Kit Micro before and after surgery. The data were analyzed using Statistical Software SPSS version 13.0. Comparison between the 2 groups was done using the Student t-test. The Pearson correlation coefficient was used for PFT results and Nurick classification scores. A p value < 0.05 was considered significant. RESULTS Cervical spondylotic myelopathy (prolapsed intervertebral disc) was the predominant cause of compression (n = 21, 70%) followed by OPLL (n = 9, 30%). The average patient age was 45.06 years. Degenerative cervical spine disease has a relatively younger onset in the Indian population. The majority of the patients (n = 28, 93.3%) had compression at or above the C-5 level. Ten patients (33.3%) underwent an anterior approach and discectomy, 11 patients (36.7%) underwent decompressive laminectomy, and the remaining 9 underwent either corpectomy with fusion or laminoplasty. The mean preoperative forced vital capacity (FVC) (65%) of the patients was significantly lower than that of the controls (88%) (p < 0.001). The mean postoperative FVC (73.7%) in the patients showed significant improvement compared with the preoperative values (p = 0.003). The mean postoperative FVC was still significantly lower than the control value (p = 0.002). The mean preoperative forced expiratory volume in 1 second (FEV1) (72%) of the patients was significantly lower than that of the controls (96%) (p < 0.001). The mean postoperative FEV1 (75.3%) in the cases showed no significant improvement compared with the preoperative values (p = 0.212). The mean postoperative FEV1 was still significantly lower than the control value (p < 0.001). The mean postoperative FEV1/FVC was not significantly different from the control value (p = 0.204). The mean postoperative peak expiratory flow rate was significantly lower than the control value (p = 0.01). The mean postoperative maximal voluntary ventilation was still significantly lower than the control value (p < 0.001). On correlating the FVC and Nurick scores using the Pearson correlation coefficient, a negative correlation was found. CONCLUSIONS There is subclinical respiratory dysfunction and significant impairment of various lung capacities in patients with CCM. The FVC showed significant improvement postoperatively. Respiratory function needs to be evaluated and monitored to avoid potential respiratory complications.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.