• Frontiers in psychology · Jan 2018

    A Prospective Study of the Impact of Transcranial Alternating Current Stimulation on EEG Correlates of Somatosensory Perception.

    • Danielle D Sliva, Christopher J Black, Paul Bowary, Uday Agrawal, Juan F Santoyo, Noah S Philip, Benjamin D Greenberg, Christopher I Moore, and Stephanie R Jones.
    • Department of Neuroscience, Brown University, Providence, RI, United States.
    • Front Psychol. 2018 Jan 1; 9: 2117.

    AbstractThe (8-12 Hz) neocortical alpha rhythm is associated with shifts in attention across sensory systems, and is thought to represent a sensory gating mechanism for the inhibitory control of cortical processing. The present preliminary study sought to explore whether alpha frequency transcranial alternating current stimulation (tACS) could modulate endogenous alpha power in the somatosensory system, and whether the hypothesized modulation would causally impact perception of tactile stimuli at perceptual threshold. We combined electroencephalography (EEG) with simultaneous brief and intermittent tACS applied over primary somatosensory cortex at individuals' endogenous alpha frequency during a tactile detection task (n = 12 for EEG, n = 20 for behavior). EEG-measured pre-stimulus alpha power was higher on non-perceived than perceived trials, and analogous perceptual correlates emerged in early components of the tactile evoked response. Further, baseline normalized tactile detection performance was significantly lower during alpha than sham tACS, but the effect did not last into the post-tACS time period. Pre- to post-tACS changes in alpha power were linearly dependent upon baseline state, such that alpha power tended to increase when pre-tACS alpha power was low, and decrease when it was high. However, these observations were comparable in both groups, and not associated with evidence of tACS-induced alpha power modulation. Nevertheless, the tactile stimulus evoked response potential (ERP) revealed a potentially lasting impact of alpha tACS on circuit dynamics. The post-tACS ERP was marked by the emergence of a prominent peak ∼70 ms post-stimulus, which was not discernible post-sham, or in either pre-stimulation condition. Computational neural modeling designed to simulate macroscale EEG signals supported the hypothesis that the emergence of this peak could reflect synaptic plasticity mechanisms induced by tACS. The primary lesson learned in this study, which commanded a small sample size, was that while our experimental paradigm provided some evidence of an influence of tACS on behavior and circuit dynamics, it was not sufficient to induce observable causal effects of tACS on EEG-measured alpha oscillations. We discuss limitations and suggest improvements that may help further delineate a causal influence of tACS on cortical dynamics and perception in future studies.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.