• Intensive care medicine · Jul 2021

    Meta Analysis

    Integrative omics provide biological and clinical insights into acute respiratory distress syndrome.

    • Mulong Du, GarciaJoe G NJGNDepartment of Medicine, University of Arizona, Tucson, AZ, USA., Jason D Christie, Junyi Xin, Guoshuai Cai, Nuala J Meyer, Zhaozhong Zhu, Qianyu Yuan, Zhengdong Zhang, Li Su, Sipeng Shen, Xuesi Dong, Hui Li, John N Hutchinson, Paula Tejera, Xihong Lin, Meilin Wang, Feng Chen, and David C Christiani.
    • Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, 655 Huntington Avenue, Boston, MA, 02115, USA.
    • Intensive Care Med. 2021 Jul 1; 47 (7): 761771761-771.

    PurposeAcute respiratory distress syndrome (ARDS) is accompanied by a dysfunctional immune-inflammatory response following lung injury, including during coronavirus disease 2019 (COVID-19). Limited causal biomarkers exist for ARDS development. We sought to identify novel genetic susceptibility targets for ARDS to focus further investigation on their biological mechanism and therapeutic potential.MethodsMeta-analyses of ARDS genome-wide association studies were performed with 1250 cases and 1583 controls in Europeans, and 387 cases and 387 controls in African Americans. The functionality of novel loci was determined in silico using multiple omics approaches. The causality of 114 factors potentially involved in ARDS development was assessed using Mendelian Randomization analysis.ResultsThere was distinct genetic heterogeneity in ARDS between Europeans and African Americans. rs7967111 at 12p13.2 was functionally associated with ARDS susceptibility in Europeans (odds ratio = 1.38; P = 2.15 × 10-8). Expression of two genes annotated at this locus, BORCS5 and DUSP16, was dynamic but ultimately decreased during ARDS development, as well as downregulated in immune cells alongside COVID-19 severity. Causal inference implied that comorbidity of inflammatory bowel disease and elevated levels of C-reactive protein and interleukin-10 causally increased ARDS risk, while vitamin D supplementation and vasodilator use ameliorated risk.ConclusionOur findings suggest a novel susceptibility locus in ARDS pathophysiology that implicates BORCS5 and DUSP16 as potentially acting in immune-inflammatory processes. This locus warrants further investigation to inform the development of therapeutic targets and clinical care strategies for ARDS, including those induced by COVID-19.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.