-
- Zhengwen Ma, Yi Ping Zhang, Wei Liu, Guofeng Yan, Yao Li, Shields Lisa B E LBE Norton Neuroscience Institute, Norton Healthcare, Louisville, KY 40202, USA., Melissa Walker, Kemin Chen, Wei Huang, Maiying Kong, Yi Lu, Benedikt Brommer, Xuejin Chen, Xiao-Ming Xu, and Christopher B Shields.
- Department of Laboratory Animal Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
- Exp. Neurol. 2016 May 1; 279: 261-273.
AbstractMost in vivo spinal cord injury (SCI) experimental models use rodents. Due to the anatomical and functional differences between rodents and humans, reliable large animal models, such as non-human primates, of SCI are critically needed to facilitate translation of laboratory discoveries to clinical applications. Here we report the establishment of a controlled spinal contusion model that produces severity-dependent functional and histological deficits in non-human primates. Six adult male rhesus macaque monkeys underwent mild to moderate contusive SCI using 1.0 and 1.5mm tissue displacement injuries at T9 or sham laminectomy (n=2/group). Multiple assessments including motor-evoked potential (MEP), somatosensory-evoked potential (SSEP), MR imaging, and monkey hindlimb score (MHS) were performed. Monkeys were sacrificed at 6 months post-injury, and the lesion area was examined for cavitation, axons, myelin, and astrocytic responses. The MHS demonstrated that both the 1.0 and 1.5mm displacement injuries created discriminative neurological deficits which were severity-dependent. The MEP response rate was depressed after a 1.0mm injury and was abolished after a 1.5mm injury. The SSEP response rate was slightly decreased following both the 1.0 and 1.5mm SCI. MRI imaging demonstrated an increase in T2 signal at the lesion site at 3 and 6months, and diffusion tensor imaging (DTI) tractography showed interrupted fiber tracts at the lesion site at 4h and at 6 months post-SCI. Histologically, severity-dependent spinal cord atrophy, axonal degeneration, and myelin loss were found after both injury severities. Notably, strong astrocytic gliosis was not observed at the lesion penumbra in the monkey. In summary, we describe the development of a clinically-relevant contusive SCI model that produces severity-dependent anatomical and functional deficits in non-human primates. Such a model may advance the translation of novel SCI repair strategies to the clinic.Copyright © 2016 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.