• J Diabetes Sci Technol · Nov 2017

    Comparative Study

    Comparative Simulation Study of Glucose Control Methods Designed for Use in the Intensive Care Unit Setting via a Novel Controller Scoring Metric.

    • Jeremy DeJournett and Leon DeJournett.
    • 1 Ideal Medical Technologies Inc, Asheville, NC, USA.
    • J Diabetes Sci Technol. 2017 Nov 1; 11 (6): 1207-1217.

    BackgroundEffective glucose control in the intensive care unit (ICU) setting has the potential to decrease morbidity and mortality rates and thereby decrease health care expenditures. To evaluate what constitutes effective glucose control, typically several metrics are reported, including time in range, time in mild and severe hypoglycemia, coefficient of variation, and others. To date, there is no one metric that combines all of these individual metrics to give a number indicative of overall performance. We proposed a composite metric that combines 5 commonly reported metrics, and we used this composite metric to compare 6 glucose controllers.MethodsWe evaluated the following controllers: Ideal Medical Technologies (IMT) artificial-intelligence-based controller, Yale protocol, Glucommander, Wintergerst et al PID controller, GRIP, and NICE-SUGAR. We evaluated each controller across 80 simulated patients, 4 clinically relevant exogenous dextrose infusions, and one nonclinical infusion as a test of the controller's ability to handle difficult situations. This gave a total of 2400 5-day simulations, and 585 604 individual glucose values for analysis. We used a random walk sensor error model that gave a 10% MARD. For each controller, we calculated severe hypoglycemia (<40 mg/dL), mild hypoglycemia (40-69 mg/dL), normoglycemia (70-140 mg/dL), hyperglycemia (>140 mg/dL), and coefficient of variation (CV), as well as our novel controller metric.ResultsFor the controllers tested, we achieved the following median values for our novel controller scoring metric: IMT: 88.1, YALE: 46.7, GLUC: 47.2, PID: 50, GRIP: 48.2, NICE: 46.4.ConclusionThe novel scoring metric employed in this study shows promise as a means for evaluating new and existing ICU-based glucose controllers, and it could be used in the future to compare results of glucose control studies in critical care. The IMT AI-based glucose controller demonstrated the most consistent performance results based on this new metric.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.