• Res Rep Health Eff Inst · Dec 2004

    Comparative Study

    Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma.

    • Mark W Frampton, Mark J Utell, Wojciech Zareba, Günter Oberdörster, Christopher Cox, Li-Shan Huang, Paul E Morrow, F Eun-Hyung Lee, David Chalupa, Lauren M Frasier, Donna M Speers, and Judith Stewart.
    • University of Rochester Medical Center, NY 14642-8692, USA. mark_frampton@urmc.rochester.edu
    • Res Rep Health Eff Inst. 2004 Dec 1 (126): 1-47; discussion 49-63.

    AbstractIncreased levels of particulate air pollution are associated with increased respiratory and cardiovascular mortality and morbidity as well as worsening of asthma. Ultrafine particles (UFP; less than 0.1 microm in aerodynamic diameter) may contribute to the health effects of particulate matter (PM) for a number of reasons. Compared with larger particles on a mass basis, UFP have a higher predicted pulmonary deposition, greater potential to induce pulmonary inflammation, larger surface area, and enhanced oxidant capacity. UFP also have the potential to cross the epithelium and enter the systemic circulation. We hypothesized that exposure to UFP causes airway inflammation in susceptible humans with activation of circulating leukocytes and vascular endothelium, a systemic acute phase response, and transient hypercoagulability. We further hypothesized that in people with asthma, UFP deposition would be increased and underlying airway inflammation enhanced. Our objectives were: to develop a system for controlled exposures of humans to UFP; to measure the pulmonary fractional deposition of UFP; to assess the effects of UFP exposure on blood leukocyte and endothelial adhesion molecule expression and activation, on airway nitric oxide (NO) production, on the systemic acute phase response, on blood coagulability, and on cardiac electrical activity and repolarization; and to evaluate these responses in both healthy subjects and people with asthma. We developed and validated a mouthpiece exposure system for human studies of carbon UFP and then conducted three clinical exposure studies: healthy subjects breathing filtered air and UFP (10 microg/m3) at rest (UPREST); healthy subjects breathing air and UFP (10 and 25 microg/m3) with intermittent exercise (UPDOSE); and subjects with mild asthma breathing air and UFP (10 microg/m3) with intermittent exercise (UPASTHMA). All exposures were for 2 hours on the mouthpiece system. Exposures were separated by at least 2 (UPREST and UPDOSE) or 3 (UPASTHMA) weeks. Prior to and at intervals after each exposure, we assessed symptoms, pulmonary function, blood markers of inflammation and coagulation, and airway NO production. Sputum inflammatory cells were assessed 21 hours after exposure. Continuous 12-lead electrocardiography (ECG) recordings were analyzed for changes in heart rate variability, repolarization, and arrhythmias. For healthy subjects, the fractional deposition of UFP at rest was 0.66 +/- 0.11 (mean +/- SD) by particle number, confirming the high deposition for UFP predicted by models. Deposition further increased during exercise (0.83 +/- 0.04). Asthmatic subjects showed higher UFP deposition than did healthy subjects when breathing at rest (0.76 +/- 0.05). During the UPREST protocol, there were no convincing effects for any outcome measures. Breathing 25 microg/m3 UFP with exercise (UPDOSE) was associated with reductions in blood monocytes and activation of T lymphocytes in healthy females. In asthmatic subjects (UPASTHMA), breathing 10 microg/m3 UFP was associated with reduced numbers of blood eosinophils and CD4+ T lymphocytes. In the UPDOSE group, monocyte expression of intercellular adhesion molecule-1 (ICAM-1) was reduced in a concentration-related manner (P = 0.001). In the UPASTHMA group, CD11b expression was reduced on monocytes and eosinophils, and ICAM-1 expression was reduced on polymorphonuclear leukocytes (PMNs). ECG analyses of UPDOSE subjects showed transient reductions in parasympathetic influence on heart rate variability and a reduced repolarization (QT) interval. In UPASTHMA subjects, ECG analyses showed decreased QT variability, but no effect on the QT interval. There were no significant effects in any of the studies on symptoms, pulmonary function, or markers of airway inflammation. We found no increases in soluble markers of systemic inflammation or coagulation. Our hypothesis that inhalation of carbon UFP causes pulmonary inflammation and an acute phase response was not confirmed. However, the observed subtle changes in leukocyte subsets and adhesion molecule expression are consistent with effects on vascular endothelial function. We also found effects on heart rate variability and on cardiac repolarization in healthy subjects. If confirmed, the finding that very low mass concentrations of particles have cardiovascular effects would have important implications for future PM regulatory strategies.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…