• Sci. Total Environ. · Sep 2019

    Seasonal profiles of atmospheric PAHs in an e-waste dismantling area and their associated health risk considering bioaccessible PAHs in the human lung.

    • Haojia Chen, Shengtao Ma, Yingxin Yu, Ranran Liu, Guiying Li, Haibin Huang, and Taicheng An.
    • Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China.
    • Sci. Total Environ. 2019 Sep 15; 683: 371-379.

    AbstractDue to the development of the economy, electronic waste (e-waste) has become a new global problem and e-waste dismantling processes are an important source of air pollution. Among the pollutants emitted, polycyclic aromatic hydrocarbons (PAHs) are a severe concern because of their carcinogenic and mutagenic properties. However, few studies have investigated the atmospheric PAHs generated by e-waste dismantling in a specific region, especially the PAH levels throughout the year. Thus, we assessed the effects of PAHs on the local air quality by sampling the total suspended particulates (TSP), PM10, PM2.5, and gaseous phase from an e-waste dismantling area and a control site during four seasons. The TSP, PM10, and PM2.5 concentrations were measured as 84.8-414, 70.7-302, and 57.1-204 μg m-3, respectively, in this area, and those of three types of particulate bound-PAHs and gaseous phase PAHs were 2.6-16.1, 2.2-15.1, 1.9-14.6, and 20.1-72.8 ng m-3, respectively. The pollutant levels were higher in the spring and winter than those in the summer and autumn. The PAH sources were identified by diagnostic ratio approaches and principal component analysis. E-waste dismantling was identified as the major source of PAH pollution within this area, where approximately 82.4% of the PAHs was attributed to e-waste dismantling at an industrial park (EP site). Among the sites sampled, the pollutant levels and cancer risk were highest at the EP site, and they could pose a cancer risk for humans, although only the bioaccessible PAHs in human lungs were considered. In particular, infants had a higher health risk than adults, thereby suggesting that air pollution with PAHs is a concern in this area. This study provides clear evidence of the requirement for control measurements of e-waste dismantling processes.Copyright © 2019 Elsevier B.V. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.