-
J. Neurosci. Methods · Oct 2005
Automatic seizure detection in EEG using logistic regression and artificial neural network.
- Ahmet Alkan, Etem Koklukaya, and Abdulhamit Subasi.
- Department of Electrical and Electronics Engineering, Kahramanmaras Sutcu Imam University, 46050-9 Kahramanmaraş, Turkey. aalkan2004@yahoo.com
- J. Neurosci. Methods. 2005 Oct 30; 148 (2): 167-76.
AbstractThe detection of epileptiform discharges in the EEG is an important component in the diagnosis of epilepsy. In this study, multiple signal classification (MUSIC), autoregressive (AR) and periodogram methods were used to get power spectra in patients with absence seizure. The EEG power spectra were used as an input to a classifier. We introduce two fundamentally different approaches for designing classification models (classifiers); the traditional statistical method based on logistic regression (LR) and the emerging computationally powerful techniques based on artificial neural networks (ANNs). LR as well as multilayer perceptron neural network (MLPNN) based classifiers were developed and compared in relation to their accuracy in classification of EEG signals. The comparisons between the developed classifiers were primarily based on analysis of the receiver operating characteristic (ROC) curves as well as a number of scalar performance measures pertaining to the classification. The MLPNN based classifier outperformed the LR based counterpart. Within the same group, the MLPNN-based classifier was more accurate than the LR-based classifier.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.