• Accid Anal Prev · Sep 2020

    A Bayesian spatial Poisson-lognormal model to examine pedestrian crash severity at signalized intersections.

    • Sirajum Munira, Ipek N Sener, and Boya Dai.
    • Texas A&M Transportation Institute, 505 E Huntland Dr, Austin, TX 78752, United States. Electronic address: munira_silvy@tamu.edu.
    • Accid Anal Prev. 2020 Sep 1; 144: 105679.

    AbstractReducing nonmotorized crashes requires a profound understanding of the causes and consequences of the crashes at the facility level. Generally, existing literature on bicyclists and pedestrian crash models suffers from two distinct problems: lack of exposure/volume data and inadequacy in capturing potential correlations across various crash aspects. To develop a robust framework for pedestrian crash analysis, this research employed a multivariate model across multiple pedestrian crash severities incorporating a crucial piece of information: pedestrian exposure. A multivariate spatial (conditional autoregressive) Poisson-lognormal model in a Bayesian framework was developed to examine the significant factors influencing the fatal, incapacitating injury (or suspected serious injury), and non-incapacitating injury pedestrian crashes at 409 signalized intersections in the Austin area. Various explanatory variables were used to examine the pedestrian crashes, including traffic characteristics, road geometry, built environment features, and pedestrian exposure volume at intersections, which was estimated through a direct demand model as part of the study. Model results revealed valuable insights. The superior performance of the multivariate model over the univariate model emphasized the need to jointly model multiple pedestrian crash severities. The results showed the significant positive influence of speed limit on fatal pedestrian crashes and revealed that both incapacitating and non-incapacitating injury crashes increase with increasing motorized traffic volume. Bus stop presence was found to have a negative influence on incapacitating injury crashes and a positive influence on non-incapacitating injury crashes. Moreover, the pedestrian volume at intersections positively influences non-incapacitating injury crashes. The difference in influence across crash types warrants careful and focused policy design of intersections to reduce pedestrian crashes of all severity types.Published by Elsevier Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.