• Spine · Dec 2021

    Machine Learning Approach in Predicting Clinically Significant Improvements After Surgery in Patients with Cervical Ossification of the Posterior Longitudinal Ligament.

    • Satoshi Maki, Takeo Furuya, Toshitaka Yoshii, Satoru Egawa, Kenichiro Sakai, Kazuo Kusano, Yukihiro Nakagawa, Takashi Hirai, Kanichiro Wada, Keiichi Katsumi, Kengo Fujii, Atsushi Kimura, Narihito Nagoshi, Tsukasa Kanchiku, Yukitaka Nagamoto, Yasushi Oshima, Kei Ando, Masahiko Takahata, Kanji Mori, Hideaki Nakajima, Kazuma Murata, Shunji Matsunaga, Takashi Kaito, Kei Yamada, Sho Kobayashi, Satoshi Kato, Tetsuro Ohba, Satoshi Inami, Shunsuke Fujibayashi, Hiroyuki Katoh, Haruo Kanno, Shiro Imagama, Masao Koda, Yoshiharu Kawaguchi, Katsushi Takeshita, Morio Matsumoto, Seiji Ohtori, Masashi Yamazaki, and Atsushi Okawa.
    • Department of Orthopedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Chiba, Japan.
    • Spine. 2021 Dec 15; 46 (24): 168316891683-1689.

    Study DesignA retrospective analysis of prospectively collected data.ObjectiveThis study aimed to create a prognostic model for surgical outcomes in patients with cervical ossification of the posterior longitudinal ligament (OPLL) using machine learning (ML).Summary Of Background DataDetermining surgical outcomes helps surgeons provide prognostic information to patients and manage their expectations. ML is a mathematical model that finds patterns from a large sample of data and makes predictions outperforming traditional statistical methods.MethodsOf 478 patients, 397 and 370 patients had complete follow-up information at 1 and 2 years, respectively, and were included in the analysis. A minimal clinically important difference (MCID) was defined as an acquired Japanese Orthopedic Association (JOA) score of ≥2.5 points, after which a ML model that predicts whether MCID can be achieved 1 and 2 years after surgery was created. Patient background, clinical symptoms, and imaging findings were used as variables for analysis. The ML model was created using LightGBM, XGBoost, random forest, and logistic regression, after which the accuracy and area under the receiver-operating characteristic curve (AUC) were calculated.ResultsThe mean JOA score was 10.3 preoperatively, 13.4 at 1 year after surgery, and 13.5 at 2 years after surgery. XGBoost showed the highest AUC (0.72) and high accuracy (67.8) for predicting MCID at 1 year, whereas random forest had the highest AUC (0.75) and accuracy (69.6) for predicting MCID at 2 years. Among the included features, total preoperative JOA score, duration of symptoms, body weight, sensory function of the lower extremity sub-score of the JOA, and age were identified as having the most significance in most of ML models.ConclusionConstructing a prognostic ML model for surgical outcomes in patients with OPLL is feasible, suggesting the potential application of ML for predictive models of spinal surgery.Level of Evidence: 4.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…